Dave Richards AA7EE

September 30, 2012

Building and Installing The Internal ATU, SSB Adapter and 160M Receive Options For the K2

F5VJD’s DSB80 is not completely finished.  I need to get rid of the chirp, and the first step will be to clear up some of my shaky grounding practices. I’d also like to build a sidetone oscillator. However, I spent a lot of time and put quite a bit of work into getting it into the case and wiring it up, and I really needed to take a breather before continuing with it.

In the meantime, Eric WA6HH posted a heads-up to the Elecraft reflector that there would be a slight price increase on several of their products in mid-September.  No more information than that was provided.  I knew that at some point I wanted to assemble several options for my K2 and, not knowing whether the options I wanted would be affected by the price increases, decided to go ahead and order them. As it turns out, mid-September came and went, and the options I ordered are still the same price but that’s OK – I wanted them anyway.

After working on the DSB80, assembling a few Elecraft K2 options would be a nice bit of relaxation. All I had to do was follow the instructions and everything would work – kind of like knitting a sweater according to a pattern. You do what they say and as long as you execute well, it works out perfectly.  That has been my experience with Elecraft so far, and these options were no exception.

The options I ordered were the K160RX 160M receive option, the KAT2 20W internal ATU, and the KSB2 SSB adapter. The 160M receive option was a bit of a no-brainer at just $40. I don’t do that well on 80 with my current antenna, so the chances of me doing OK on 160M are pretty slim, but one day I’ll be in the position to put up an antenna for 160M and on top of that, I was keen to see how far beyond the band edges I’d be able to receive – it was a way to increase the general coverage capabilities of the K2 just a little. Plus, the ability to have a different antenna for receive could be useful. The internal ATU would make operation simpler.  I’d been using an MFJ manual tuner, and wanted to be able to hop bands and frequencies more quickly (yes, lazy I know).

The SSB option wasn’t in my head when I first built the K2. I was so into CW, and loved the simplicity of a high-performance rig assembled solely with CW in mind.  However, very occasionally, I have heard stations on SSB that I wanted to contact. One station in particular was in the Philippines who was calling CQ with no-one coming back to him.  I don’t remember the band, but he was so loud that I knew he’d be able to hear even a QRP signal from me. It was one of those moments where I thought it’d be neat to speak into the mic and make an instant, easy contact with a DX station. Plus, even though I don’t use digital modes much at all, it would allow me to use WSPR occasionally if I so desired. I was also harboring a fantasy that I might want to start rag-chewing on phone one day but in retrospect, that was probably an unrealistic hope 🙂 As it turned out, the novelty of having SSB was starting to wear off after 2 QSO’s, and was mostly gone after the 3rd.  It’s still a good extra capability to have though, and I do like going through the process of assembling, installing and aligning circuits.

The K160RX 160M receive option is  a simple little board that doesn’t take long to put together, so I decided to have a go at it first. The board is upside-down in the first shot.  Sorry about that. Hmmm – looks like a couple of my foster cat’s hairs made their way onto the relay on the right-hand side. Those long-haired cats leave their marks everywhere…….. 🙂   (Scroll to the end of this post to see where those hairs came from.)

Installation of this option is straightforward. On receive it tunes down to about 1600KHz, though with reduced sensitivity.  I’m not yet sure what the upper limit is. The board adds a 160M lowpass filter for the separate RX antenna, and switches in extra capacitance in the bandpass filter on the main RF board for 160M.  I’ve only heard one station on Top Band so far, though I’m sure the next Stew Perry contest will change that. Here’s what it looks like installed in the K2:

Looking from the rear (the plastic “boot” over the antenna connector is to remind the user not to use that BNC when the internal ATU is installed – it is supplied with the internal ATU kit –

Next up was the KAT2 Internal 20W ATU. This next picture of  the top-side of the partially completed LC board (the ATU is comprised of 2 boards) is posted here to illustrate a point.  I had a Twitter conversation recently with a ham who wants to build the K2, yet has a problem with his soldering generating a large amount of residual flux.  He couldn’t figure out why after soldering, his boards have so much flux on them.  I referred him to the Elecraft soldering guide and after reading it, he concluded that he was putting too much solder on his joints. This reminded me of Don W3FPR, who repairs and aligns a lot of K2’s, saying on the Elecraft reflector that he sees a lot of K2’s with way too much solder on them.  If you use a thin and mildly active solder along with a small tip on your soldering iron, you can easily regulate how much solder flows onto the joint, and ensure that you use the right amount and no more.  I use Kester RMA 285 in .02″ diameter (the RMA stands for “Rosin Mildly Active”.)  My tips are 1/32″ and 1/16″ diameter chisel tips – that’s 0.8mm and 1.6mm.   With boards that have plated-through holes, thin solder and a small tip will allow you to apply enough solder to fill up the hole and just a little more. From what I’ve read, ideally, you want to avoid a concave shape of solder in the hole – you should have a very small fillet of solder leading up to the lead, with the operative phrase being “very small”. I veer towards making the joint almost flat with the board – though flush cutters won’t allow me to make the joint totally flat. If you are applying the minimum amount of solder needed to make the joint, you wont have problems with solder bridging adjacent pads and causing unwanted shorts. You also won’t need to clean the flux off with a flux cleaner, because there won’t be much, and mildly active rosin isn’t corrosive enough to cause a problem if left on the board.  I think I did end up applying a little flux cleaner to this board eventually, but this picture was taken before applying it. What little flux there is, is honey-colored and hard to see in this picture, but I hope it illustrates the fact that unless you’re very particular about appearance, you don’t need to use flux cleaner if you’re using the right kind and amount of solder:

Another view of the top-side of the partially completed LC board:

Incidentally, if the board you’re soldering on doesn’t have plated-through holes, you will need to apply more on top of the joint in order to make a reliable connection. The capacitors on the above board are bent over per the instructions in order to achieve the necessary clearance. The underside of the LC board contains all the relays. If you look closely, you’ll see that relay K13 is not quite parallel with the other relays. These kinds of oversights on my part drive me potty but are of no consequence to the performance of the circuit:

I don’t have a picture of the whole of the top-side of the completed control board, but here’s a view from the side. It’s not a very good photo technically either but it’s all I have. Sorry about that. Note that the NPO cap behind the toroidal transformer is not the stock part (in case you were wondering why yours looks different.)  The stock part is a monolithic cap. I thought that I might have damaged mine (long story) so replaced it with this part. As it turned out, the stock part was fine, but as this NPO cap does a perfectly good job in it’s place, I left it in –

The finished KAT2 Internal 20W ATU:

At the bottom is the control board, and on top, the LC board, containing all the capacitors, inductors, and the relays that switch them all in and out of circuit when finding a match. The pink piece of foam underneath was simply to raise the ATU to the right angle to get a good shot.  I have become a bit lackadaisical recently, as I really should have looked for a way to support the board that wouldn’t be visible to the camera. I’m slipping.  Sometimes I just want to take the pictures and get to the next part of the project:

The completed unit showing the underside of the control board, with the 2 trim-pots that set the readings for forward and reflected power:

The KAT2 20W Internal ATU installed in the top cover of the K2. I’ve placed black electrical tape over the unused holes to prevent dust from getting into the K2.  My top cover was supposed to have been supplied with green tape over these holes, but it had already been removed when I received it.  Not a biggie:

Phew – only one more option to go – the KSB2 SSB adapter. I loved assembling the KSB2 board, as it is a little more densely packed than the K2 or any of the other options I had built so far. It’s fun building small things. Here’s the top of the completed board, showing all those lovely crystals (it’s a 7-pole crystal filter) –

The manual says to install the crystals flush with, and tight against the board.  I usually try to build my circuits so they will be as reliable as possible and although there was an insulating solder mask on the top of the traces that connect to the crystal terminals, there was, in my estimation, the slightest chance that if the integrity of that solder mask were to be breached, there was a possibility of the pads being shorted out by the metal underside of the crystal casing.  It’s a long shot but why risk it if you can avoid it? I spoke with Richard at Elecraft who confirmed to me that if I were to space the crystals above the board by the thickness of a piece of paper, it wouldn’t adversely affect the performance of the filter. That was all I needed to hear, so that is what I did.

Although I have definite OCD tendencies, I do keep them in check on a regular basis.  Functionality is an important factor and although it’s nice to have all my toroids looking neat, I recognize that there is no difference in functionality between a toroid with perfectly spaced turns and the ones that look like mine in the picture below. Some of my toroids turn out looking really nice and some of them look just OK, but they all work just fine 🙂  –

The underside of the SSB adapter board. RFC1 and RFC2, though marked on the underside of the board, are actually installed on the top-side. They are wound on very small FT23-43 cores and the only reticence I had about top-mounting them was that it was hard to avoid the windings coming very close to the metal cases of the adjacent crystals. I know the windings are covered in insulation, but I’m not overly keen on it. Unavoidable though. You can see how close the mini toroidal chokes are to the metal crystal cases in the direct overhead shot of the board, 2 pictures above. Here’s one of the underside of the board –

There are several reasons I post many pictures of my projects. I know there are times when I’m assembling something and I want to know how other people do it.  Occasionally, if an instruction in a manual is unclear to me, or can be interpreted in different ways, I’ll go foraging through the internet to see what other people who built the same thing ended up with. Perhaps I can help a few people by offering up my pictures. Also, it’s fun taking pictures!

Before adjusting the carrier balance, the instructions in the manual say to place the wiper of the carrier balance trim-pot at approximately mid-travel. I did this and found that very little further adjustment was necessary to null out the carrier. I have only performed a rough adjustment using the S-meter of the K2 so far, but I’m pretty close.

All these options required a small number of modifications to the main RF board on the K2. Some builders who are reticent about desoldering components from their beloved K2’s have opted to use the Rework Eliminators.  I did think about it but decided against using them for 2 main reasons. Firstly, I’m cheap frugal and was already stretching my finances a bit even by buying just the basic K2. Secondly, I’m quite good at soldering and desoldering and don’t find it a nuisance at all to have to partially disassemble a rig and desolder a few components in order to fit a new option.  I have actually enjoyed the partial disassembly of the K2, as I got a chance to renew my acquaintance with it’s innards. The K2 PCB’s are high quality boards. You’d have to apply an awful lot of heat for a long time in order to damage them.  I did turn the flux darker in color in one or two places, but a quick application of flux remover with a plumbers flux brush took care of that.  The places on the K2 board where I have removed jumpers and desoldered components still look really good.

As a continuation of the last topic,  I hope you’ll allow me to air a few more opinions about soldering and the K2.  I do understand how someone who hasn’t built a K2 before would want to protect their investment. The Rework Eliminators are very appealing in this regard. In my opinion, they could be useful if you are going to be changing options a lot. Even a good board in the hands of an experienced tech will start to look shabby if soldered and desoldered enough times. Now that I have installed the 160M receive, internal ATU and SSB options, I doubt very much that I will need to remove them. If you’re experienced at soldering, the lack of Rework Eliminators  in my opinion is not a problem. If you’re not experienced at soldering, in my opinion also, you shouldn’t be building a K2.

Please don’t interpret the last sentence as a discouragement from building one of these absolutely brilliant rigs. If you have any inkling to build a K2 – please do.  It might be the last chance you’ll get to build this kind of a kit at the component level.  It’s certainly a classic of our times.  If you’ve ever thought that you’d like to build a K2 – definitely do it, but make sure that you can solder well before you start.  $740 plus tax + shipping (at time of writing) is a lot of money to spend on something if you’re just going to drown it in solder.

If your response to this is is something along the lines of “But my soldering isn’t very good and it’s always been that way” then I challenge you to improve it. It can be done.

As part of installing the SSB option, some extra components have to be installed on the control board – some capacitors, a couple of transistors, and a set of header pins for configuring the mic wiring for whatever mic you will use. For configurations that require adjacent header pins to be connected together, you can use jumper blocks.  The mic I decided to use was an old Heil Traveler headset.  I didn’t like the bulk of the thicker wire and adapter cord (that in my case was configured for an FT-817) and the small plastic box that contained a PTT button and freq up/down buttons, so I chopped it all off and got to decide how I was going to wire it to the 8-pin mic plug.  I decided to go with the straightforward configuration that the Elecraft MH2 mic uses i.e. adjacent pins connected to each other.  If I decide in the future to use any different type of mic, I’ll probably use a home-made adapter cable so that I don’t have to go into the K2 and re-configure for each different mic –

Here’s the KSB2 SSB Adapter installed on the K2 main RF board.  There is a hole in the SSB adapter board that allows the frequency counter probe to be attached to TP2, but I’m a little concerned that although it can also still make electrical contact with TP1, if I want to seat it fully into TP1, it looks like I’m going to have to file some of the edge off the KSB2 board –

Those blank holes on the back of the K2 are starting to fill up.  The blank holes are supposed to be covered with green masking tape as supplied, but that tape had already been removed on the covers supplied to me, so I have covered the few remaining holes with black electrical tape. Looks OK and keeps the dust out –

I’ve had a few SSB QSO’s with the K2 so far and out of 5 QSO’s, 4 of the stations gave me unsolicited reports of excellent sounding audio. One station said that perhaps I could use a few more highs and a little less on the low end, but that I should be careful about messing with the audio too much as it already sounded very good.  I may adjust the carrier placement in the filter pass-band just a little to accentuate the highs, but I think I’m pretty close.

Assembling and installing these options has been an enjoyable exercise.  It has given me the opportunity to re-familiarize myself with the insides of the K2 and has only solidified my liking for this rig, as well as my respect for Elecraft. The ham community is very lucky to have this company making these great products for us.   My budget has taken a bit of a beating this month, but I’m hoping to be able to get the K60XV 60M option pretty soon 🙂

Oh – and those hairs on the relay in the very first picture in this post? They came from Chala – a 10 year-old kitty who I’m fostering right now. There is a group that goes out every night and feeds the feral population here in Oakland. Chala was amongst those cats, but one of the volunteers brought her into the shelter because she was not doing at all well on the streets. She’s a shy kitty with a very sweet nature, and was unable to defend herself from the other cats. She was in really bad shape when first brought into the shelter, but is slowly starting to settle down and get comfortable here. She’s a sweetheart and as you saw from the photo of the K160RX option (if you were looking carefully), is already starting to leave her mark on my construction projects 🙂

Chala is pondering how the K2 will perform on 60M when I build the K60XV option.

September 19, 2012

Courtesy Of F5VJD – A Working G4JST/G3WPO DSB80 80M DSB Transceiver!

Filed under: Amateur Radio,Ham Radio,QRP,Uncategorized — AA7EE @ 5:03 pm
Tags: , , , , ,

As I’ve explained in earlier posts, my interest in the G4JST/G3WPO DSB80 rig goes back a long way – back to the mid 1980’s in England when I read the description of this little rig in Ham Radio Today and scratched together the money to buy the basic kit. An enclosure was also available but I didn’t have enough money for that as well, so built it into an aluminum enclosure I already owned. That little rig gave me much fun until one day in my apartment in Hollywood in the mid-1990’s when I accidentally connected the 12V power to it the wrong way round and it instantly stopped working. I didn’t have the patience, time or experience to get it working again, so (and it pains me to say this) I tossed it into the trash. There have been several times since then that I have regretted doing that, and since then, the inability to see my DSB80 only served to further memorialize that rig in my mind.

Recently I dug up the reprint of the article that came with the DSB80 kit (I did keep that) and tried to rebuild it Manhattan style – here and here.  The receiver worked as well as I remembered the original working, but I experienced a problem with the transmission of a residual carrier on transmit. After a few weak attempts to cure that issue, I shelved it in favor of other construction projects. It’s a weakness of mine – if something doesn’t work well the first time I switch it on, unless the fix is relatively simple, I don’t always pursue it. I didn’t consider it a failure, as the receiver worked well – and it was wonderful to once again listen to a direct conversion receiver that utilized a diode ring DBM . The TX seemed to work up to and including the final,  so there was really not that much to troubleshoot if I ever wanted to give it another go.

Then a very exciting comment was left by Richard F5VJD on the blog post about my DSB80 build. It read as follows –

“Hello Dave

I also built one of these in 1983 and I still have it… but like you I fried it during a fit of nostalgia.

I do still have the original instruction sheets and the original Ham Radio Today articles which I could copy and send you if you like… and as I can’t really see myself replacing all the fused components in the RX, I would also be happy to send you the radio if you promise to repair and use it. It has some nostalgia value for me because it was the first kit I ever built and I had my first ever QRP QSO using it, so it would be nice if it was back on the air again after all these years.

Let me know what you want to do and I’ll get things started my end.

73

Richard”

Well, how do you think I replied? This was a chance to see that little rig again – and to see how another ham had built it too.  Richard told me that he had used the original case suggested by Frank and Tony, so I was curious to see a more “original” version of the DSB80 than mine was.  Richard packed up the mighty little transceiver and even took a picture of him with it outside his home in Northern France to mark the beginning of the journey to it’s new home in California:

About a week later, it turned up on my doorstep in California:

Wow – talk about well-packed! The DSB80 was very well protected with much packing material, and Richard had written his address inside each layer while packing, just in case it became partially unwrapped in transit.  We needn’t have worried, as it made it’s way to me in one piece. It’s just as well that I’m patient, as it must have taken the best part of 10 minutes before I finally saw the object of my desire. What a great looking transceiver! As well as the several address labels in the package (including one taped to the rig itself), there was an envelope inside the enclosure, with a note from Richard and some extra J310’s and BC182’s. The BC182’s are near-equivalents to the BC238’s and BC239’s used in mic amp, AF pre-amp and RF driver.

I could barely wait to open it up and see that circuit board once again:

I could hardly contain myself.  It was so great to see that circuit board that I remembered so well from my youth.  Notice Richard’s ingenious use of Meccano to help support the mounting bracket for the tuning capacitor. I think that Meccano sets were called Erector sets in the US:

Here’s a view from the other end of the rig, showing the input/output bandpass filter, with the 2 inductors wound on T68-2 cores. Fixed to the back of the case, that board with the relay gives full break-in operation:

In case you’re not familiar with the architecture of this rig, or don’t remember my previous posts on the subject, it is a CW and DSB transceiver based around a Mini Circuits SBL-1 diode ring double balanced mixer package.  The SBL-1 was rated down to 100KHz so gives excellent out of band rejection at the design frequency of 3.5MHz. My earlier Manhattan version used an ADE-1 which is only rated down to 1MHZ, but there was not a trace of any out-of-band breakthrough.  Here’s a block diagram and device breakdown:

Block diagram and device breakdown of the G4JST/G3WPO DSB80 80M CW/DSB transceiver, details of which were first published in the March 1983 edition of the UK magazine “Ham Radio Today”.

This DSB80 of Richard’s had been inadvertently connected to 12V with reverse polarity, just as I had done with mine. The first order of the day was to remove the board from the case and, well, make it work again! Richard mentioned that one or two of the electrolytics had exploded, so I knew that at the very least, I’d need to change some of the electrolytics and one or more active devices.  On getting the board out of the case and onto the workbench, one of the big advantages of boards without plated-through holes became apparent – with the help of desoldering braid, it was very easy to remove old components and replace them with new ones. After replacing the big electrolytics that performed service as smoothing capacitors for the 12V supply (one of which had very obviously exploded) I realized that it would be very little trouble to go ahead and replace every single electrolytic. After all, the rig was about 25 years old, and those caps might be getting a bit dry by now.

After replacing all the electrolytic capacitors (even the small signal ones – including replacing the 1uF electrolytic in the diplexer with a polyester cap just for good measure), I connected wires for the volume pot, antenna and speaker, connected a 12V supply (the right way round this time!) turned the volume up and – as predicted – heard absolutely nothing. This was not a surprise as I had a feeling that amongst the devices well and truly cooked would have been the LM380.  This rig used the 14-pin version of the LM380 and I had planned in advance and purchased one. In it went (thank heavens for de-soldering braid!) On re-applying power, I heard hiss in the speaker, and on touching the input to the DBM, I heard atmospheric noise.  It couldn’t be this easy could it? Well yes, it could!  Further investigation revealed that the VFO and buffer were working and the receiver was fully operational.  Not only that, but the transmitter was working too – and without the issue of residual carrier emission that I had experienced with my Manhattan version. Woohoo!

This was the point at which I became a little uncertain what to do next. I still felt that it was not really my rig – it was Richard’s that he had sent to me.  I knew that he had given it to me, but still felt a reluctance to change it too much from the way in which he had built it, for fear I was being disrespectful to the history of this fabulous piece of home-brew. After all  it was the first transceiver he had ever built, with which he had conducted several hundred QRP QSO’s.  Richard put my mind at rest by saying that it had ceased being his rig once it left his house in that brown paper package. He was happy to know that it would continue having a life in California, and wanted me to do whatever I wanted in order to “make it mine”. What a helpful and wise sentiment. I wanted to retain something of the original rig other than (obviously) the circuit board. Richard suggested that perhaps I could fabricate an enclosure from copper-clad laminate and use the original top cover. What an excellent idea!

First of all, I wanted to modify it to cover the entire US band of 3500 – 4000KHz. The original version, being a UK design, covered the UK 80M band of 3500-3800KHz. I used a different tuning capacitor – a 365pF air-spaced variable with a built-in 8:1 reduction drive that I bought new from Midnight Science. I also re-wound the VFO toroid and changed a few of the other caps in the VFO circuit to achieve a coverage of 3485 – 4019KHz.  Even with the reduction ratio of 8:1, this still gives a tuning ratio of over 125KHz per turn of the tuning knob.  In order to help, I added a fine-tuning control consisting of a 1N4001 diode across the VFO tank circuit, acting as a varactor, and tuned with a 1K linear pot. The schematic of the modified VFO, with values, is as follows:

The other modification I needed to perform was to redesign the input/output bandpass filter in order to accomodate the wider US band.  Thank goodness for the software that comes with EMRFD – the program DTC.exe makes the business of designing a double-tuned filter quite straightforward.  The filter used in the original design of the DSB80 uses taps on the inductors for impedance matching into and out of the filter, while the circuit that the EMRFD software is based on uses a tap point at the connection of 2 series capacitors.  The filter I used keeps the output of the transmitter relatively constant over the 500KHz bandwidth of the US band:

Here’s what the board looked like with the mods finished.  The redesigned bandpass filter is at the left-hand side. Just to the right of it, the ferrite toroid wound with the green wire is the transformer that matches the low output impedance of the MOSFET final to the 50 ohms the bandpass filter needs to see. The VFO coil is on the far right of the board, just above the LM380.  The double-balanced mixer package (the heart of the rig) is the silver rectangular package just to the right of center:

Here you can see a closer view of the VFO toroid.  It’s not very easy to see, but very close to, and to the right of it is the 1N4001 diode that is used as a varactor to provide bandspread. The lead sticking out to the right is for the volume control and the lead leaving the board in the foreground is for the bandspread potentiometer:

Even though this particular board is 25 years old and has been worked over a few times by my soldering iron, I still think it’s pretty nice-looking:

I have only reproduced the schematics of the parts of the circuit that I altered. It didn’t seem appropriate to show the full schematic of the DSB80 here without permission. However, although the original article doesn’t seem to be available on the internet in good resolution, it is available from the right people if you know who to ask 🙂

Now that the board was fully operational in both DSB and CW, the next task was to fashion a new enclosure.  I did want to retain some of the flavor of Richard’s version of this fine little rig and had wanted to keep the 2 small pieces of Meccano that he used in his tuning capacitor mounting bracket. After the decision was made to use an air-spaced variable instead of the polyvaricon that the original used, this didn’t seem possible.  I went with Richard’s suggestion to make a new enclosure from copper-clad laminate and use the original top-cover.

I cut 3 pieces of laminate for the bottom, back and front panels, and started marking the positions of the front-panel controls on a piece of paper.  When doing this, I mark the outline of the front panel life-size on a piece of paper and keep re-arranging the controls to find a suitable layout. This picture gives you the idea, though when this picture was taken, neither the paper layout nor the partially-drilled front panel were complete. To the right of the horizontal rectangular cutout for the frequency display are 4 holes that I drilled at what were to be the 4 corners of the vertical rectangular cutout for the modulation meter.  When making square or rectangular cut-outs, I drill a series of overlapping holes around the perimeter of the rectangle, remove the center piece, and use a small file to file the edges of the cutout smooth.  It’s slow work, but with care you can make some very acceptable cutouts:

Wherever possible, I mark the cutouts and hole-centers on the copper side of the board:

The finished front panel (before I realized I was going to have to enlarge the hole for the main tuning capacitor) –

The finished 3 panels with all cutouts and holes.  I think I might have cleaned and lacquered the boards at this point.  I scrub the boards clean with a Scotch-Brite pad, a little dish soap (washing up liquid for the Brits!) and plenty of elbow grease. This was the first time I decided to drill extra holes for those little “spigots” that help to keep switches and pots from rotating off-center –

 I use a hand punch to make holes wherever possible. It’s quicker and more convenient than drilling.  For larger holes, I start with a hole made with the punch, then enlarge it with a T-handled reaming tool. I got lucky and bought my punch from Harbor Freight for around $20.  They don’t carry this anymore, but similar punches are available online.  Mine came with a series of different-sized dies and looks like this:

I think it turned out pretty well:

Aw heck – I’m just dying to show you how the rig looks in it’s new case with it’s fancy digital display from N3ZI. The 2 knobs on the upper left hand side are the volume and bandspread respectively. Under the bandspread knob is a switch that will be used to switch between 2 different bandwidths when I fit a single-stage audio filter in between the AF pre-amp and the LM380 output stage. Under that switch is the headphone/speaker socket.  I did buy a nice speaker and grill cloth from Elecraft (a K2 replacement speaker) to fit in the top cover, but realized that drilling holes in the top cover might possibly damage the crinkle finish.  I didn’t want to risk that, so will probably live without an internal speaker.  I could always make a top cover from copper-clad laminate and drill holes in that for a speaker, but I like using the original top cover. Underneath the right-hand side of the frequency display is a toggle to switch the LCD backlighting on or off.  The meter is for monitoring modulation level in DSB transmit. The bank of switches on the far right are (top to bottom) TX/RX, DSB/CW and the on-off switch for the whole rig –

You’ll notice that I’ve used a hot glue gun to secure the VFO toroid to the board. This is also the first view of the 365pF air-spaced variable cap from Midnight Science. –

A few more views –

There are a few small issues that I’m working on. The TX does chirp a bit on CW transmit.  It didn’t do that on the bench, and I know that Richard’s version didn’t either. I’m pretty sure that a few more well-placed  RF bypass caps and/or feritte beads will cure the problem.  I think that I need to do a bit more work on how the board is grounded also.  Future projects will be to add a switchable bandwidth audio filter.  The later version of the DSB80, called the DSB2, had one, and I plan to use the same circuit.  It uses a single op-amp.  Richard’s version had a sidetone oscillator for CW and I’d definitely like to add one.  My antenna is rather inefficient on 80, so if I want much success on this band, CW will be the way to go.

Richard and I have kept up a regular e-mail correspondence in the last couple of months and in one e-mail, he told me how his DSB80 started it’s life –

A bit of history for you:  the rig first squawked it’s mighty 2 watts in anger at 00h08 27 January 1986; signals received by G4BMR Derek (599 about 40 miles away from my then QTH Swindon) but it wasn’t really the first proper QSO as I was already in QSO with Derek on 2M FM and had been for the previous 4 hours.  He was helping me to try and solve the hum, drift and chirp problems and we were also in QSO on 80M CW so all I did was just change rigs when I thought that I had the problems licked – it was quite a thrill to at last hear a nice clean CW signal coming back to me via 2M.  As soon as that had been achieved and we had swapped signal reports, Derek went QRT – not surprising after 4 hours!

I then finished boxing the little chap up but at 01h03 with the adrenalin still running high, there was only one thing for me to do and that was to call CQ.  I received an immediate response from OK3CSA Juro in Myto who gave me a 569 report;  for me, this has to be the first real QSO with the rig and also my first QRP QSO and my first QSO with something I had put together myself.  (Paper logs do still have their uses – the one in question is in front of me as I write – which is why I still to this day log this way!)

Here is that log entry of which Richard speaks – the QSO with Derek G4BMR and the first “proper” QSO, with OK3CSA –

Richard’s note continued –

Enjoy your time with your visitors and I look forward to reading the next instalment of the saga of ‘The little rig who found a new home in America…’

Well, the next installment begins here! The big success of this rig for me is that it has connected me to my ham radio past and filled in the gap on a long-lost piece of radio nostalgia.  It all happened because Richard G0BCT/F5VJD shared with me his first ever home-brew rig and allowed me to let loose on it with my soldering iron.

For that, I thank you OM!

Note – although the wiring on my version may look a bit neater, my version chirps and Richard’s didn’t.  He found that it was important to keep the various leads to the board well-separated, and I think I will end up bringing my connections out to the top of the board like he did in order to experiment with them to find a layout that works best.  He told me that his choice was between pretty yet defective, or scruffy and functional.  I am going to have to make the same decision the next time I take the top cover off this rig!

The intention when taking this photo was to set the DSB80 to 3985 – the North American QRP SSB calling frequency. It wasn’t until later I noticed that I had set it to 3895. These senior moments worry me!

PS – I liked Richard’s original version of this rig so much that I have kept the case, tuning mechanism and associated components intact in case I wish to recreate it one day.  I do like the ability to see where I am on the band with the LCD frequency display but in my opinion, his version of this DSB80 looked more like a “real home-brew rig”. I have not had a QSO with my version of the rig yet, but have spent many hours listening to it already. I love listening to this DC receiver! There is still a slight chirp for me to get rid of before I use it on CW and truth be told, I am more of a CW person than a phone person.  I was 100% phone in the earlier days of my ham career and maybe the pendulum will swing back in that direction one day but for some reason, after a working life in which I earned my living by talking (DJ’ing and voice-overs for radio and TV commercials), I now can’t think of very much to say on a microphone!  Even on CW, I tend to be more of a listener than “talker”, but I do love to listen. Besides – listening is the perfect thing to do while I’m building , and this little rig sounds great 🙂

Stop Press – I fixed the chirp.  It was a wiring error on my part and a simple fix. Will explain in a future post. I also had my first QSO with the rig this evening (Oct 4th) on 75M DSB! More info to follow.

Create a free website or blog at WordPress.com.