Dave Richards AA7EE

August 30, 2014

SA602 and 604 Giveaway Update, and SA604 Circuits

Filed under: Amateur Radio,Ham Radio,QRP — AA7EE @ 6:04 pm
Tags: ,

I’ve had a busy few days. Since posting details of the reels of SMT SA602 and SA604 IC’s that a very generous ham sent to me with a request to distribute them to other homebrewers and building groups, I’ve been spending quite a lot of time cycling to and fro between my house, the local print and copy shop (for supplies of padded mailers), and the Post Office. The first day’s worth of envelopes looked like this just before being bundled into my backpack for the short trip to the Post Office (names and addresses inexpertly blurred out in order to protect the identities of the innocent) -

I mailed out 18 packets on the first day, and almost as many the next day. Most went to individual builders and experimenters, though a few did go to groups for group builds. The response has been very encouraging. I wasn’t too sure how many people would be interested in SMT parts but it seems that quite a few folk do indeed experiment and build with them – and they are not all young ‘uns either. One gentlemen who requested a set is 83 years old. Excellent! With the help of breakout boards, like W1REX’s MePADS, or these ones from OSH that Sanjay KI6VFH told me about (only $1.50 for 3, including shipping), once you’ve got the device mounted to the pad, building Manhattan-style with these IC’s is straightforward. Incidentally, the boards from OSH are SO-8, so will work for the 602’s but not the 604’s, which are SO-16. Also, Rex’s pads can be glued straight onto a copper substrate as there are no contacts on the flipside, while the OSH one will need to be suspended above the copper groundplane with short, stiff ground leads. Perhaps someone has posted a design for an SO-16 breakout board on OSH?

Standing in line at the Post Office has it’s good sides, one of them being the notices that I spotted attached to the plexiglass divider at the customer service counter -

As I thought would be the case, everyone wants the 602’s. I was expecting only a few people to also want 604’s but as it turns out, a majority are also asking for a few of them. Many don’t yet know what they will do with them but are hoping to find a worthy project. A few actually have projects planned. One gentleman is planning a group build with his club, in which they will build pagers. I didn’t ask for more details on what the frequency of operation will be, but I am curious. Another is going to build a weather satellite receiver.  Paul K0EET mentioned that 604’s turn up in home-brew spectrum analyzer projects as an IF strip and a logarithmic RSSI (to drive the y axis).  He also told me about an article in the July 1993 issue of QST by OH2GF for a synchronous AM detector using an SA604 and a couple of 602’s. It is designed for receivers with an IF of 450-455KHz, so would be a great addition to many existing shortwave receivers. Thanks Paul (makes mental note to remember this project). In it’s application as a Received Signal Strength Indicator (RSSI) it could also be used as an S-meter for a direct conversion receiver (a quick Google search should get you a circuit).

So quite a few circuit ideas for the SA604. The application sheet also shows how, with an SA602, you can make a simple FM receiver. Personally, I can see wanting to try it out as a synchronous detector for AM signals at some point.

Oh – one idea for the 602’s which I thought was very novel, was one gentleman who plans to rip out the guts of his HW-8 and replace them with a DDS-tuned superhet. Cool!

I started out with quite a large reel – bigger than shown in the picture of Sprat The QRP Cat performing QC. By the time I took that picture, several hundred had already gone out to various experimenters and builders. With the encouraging response to these posts, I will probably run out soon. Not to worry though, as the gentleman who sent them to me still has some left that he has promised to send. I am not sure when those will arrive, but I’ll post updates to this blog. I don’t think it will be very long.

If you build something cool with these chips, please let me know!

NOTE – SA602 and 604 offer on hold until further notice. I’m almost out, but the very kind gentleman from Oregon who sent me this batch has some more he will be sending soon. I will make a new post to this blog when I have more IC’s in stock.

August 26, 2014

Free NE602’s and 604’s

Filed under: Amateur Radio,Ham Radio,QRP — AA7EE @ 8:29 pm
Tags: , , ,

It’s been on my mind to make this post for quite a while now. Some time back, a very generous ham in Oregon gave me a sizeable quantity of SA602 and SA604 SMT IC’s. They were part of a production run that didn’t materialize. He got a deal on them and has been hanging onto them ever since. Now he would like to pass them on (for free) to other home-brewers, so he asked me to help out. He wants them to go into the parts bins of people who may well use them, and does not want them to go to people who will merely resell them for a profit. He’s perfectly OK with them being used for a club group build, or a club kit designed to raise funds for a QRP club – just not in large quantities to individuals who will turn around and sell them. The idea is to encourage people to build something.

I’m sure you know all about the NE602/SA602/NE612/SA612 oscillator and double-balanced mixer IC. It has, of course, been used in countless numbers of simple direct conversion receivers such as The Sudden. It’s not ideal in the front end of a receiver, being very susceptible to overload in that usage, but it sure does make it easy to build a very simple DC receiver.  It can be used to good effect as the 2nd mixer in a receiver, and as a balanced modulator. In any application where the input levels are within certain defined limits, it performs well. The SA604 is a low-power FM IF chip. I’ll leave you to do the research and check out the datasheets.

Oh – and these IC’s have been through rigorous quality control. Here’s Sprat The QRP Cat checking the roll of SA602’s. They passed the test :-)

Sprat The QRP Cat performing quality control on the roll of SA602’s.

The SA602’s are in an SOIC-8 package and the SA604’s in an SOIC-16 package. Here is one of each, placed on a sheet of W1REX’s MePADS -

Jason NT7S built a really neat SSB rig based around an Si5351 PLL/VCXO chip. He used 2 of these SA602’s as part of the design. you can read about (and see) Jason’s “Simple SSB” rig here. He describes the rig’s architecture in an earlier post here. It’s great stuff and very much in the spirit of ham radio.

I don’t want to make any money from this, but would like to cover my expenses, so I will charge a small fee to cover the cost of a padded mailer, postage and the Paypal fee. Here’s the deal. If you are an individual home-brewer in the continental US who could use some of these SA602 SMT IC’s (which are exactly the same as NE602’s), send me an e-mail – either to my e-mail address on QRZ, or to mycallsign@arrl.net to let me know you’re interested. I’ll reply to let you know what e-mail address to Paypal the money to. For $4, I’ll send you 15 SA602 IC’s. If you’d like some SA604’s as well, let me know but please only ask if you think there’s a chance you might use them.  If you would like a larger quantity for a club kit or group build, send me an e-mail with the info and I should be able to help you out.

Oh – and unlike my recent variable capacitor give-away, I have quite a lot of these, so you don’t need to be the first (or even the 20th or 30th) person to reply. As not too many builders use SMT, I suspect this offer will be available for a while.

I am very grateful to the gentleman in rural eastern Oregon who is the reason for me to be able to spread this little piece of home-brew goodwill!

NOTE – to the gentlemen who left comments, I have deleted them. It occurred to me that having your e-mail addresses and info in the comments section might cause some enterprising scammer to pretend he/she was me and ask you to send the money to them. Having said that, they would have to be pretty desperate to go to all that trouble to make an extra $4!  Best to e-mail me at my e-mail address on QRZ, or to mycallsign@arrl.net

NOTE – SA602 and 604 offer on hold until further notice. I’m almost out but the very kind gentleman from Oregon who sent me this batch has some more he will be sending soon. I will make a new post to this blog when I have more IC’s in stock.


July 7, 2014

The ZL2BMI DSB Transceiver – An Update

Filed under: Amateur Radio,QRP — AA7EE @ 6:51 am
Tags: , ,

A couple of years ago (gosh – has it been that long?) I attempted to build the ZL2BMI DSB transceiver for 80M.  It was an appealing design, being simple, and capable of being built into a compact space. Eric, the designer, had originally conceived it in the mid 1980’s as a very small rig to be used while bushwalking or hiking in his home country of New Zealand. It first appeared in issue 83 of SPRAT, with an updated version being featured some 16 years later in SPRAT 146. This little rig has spanned many years!

My build looked good but proved that although I may be capable of building things that look quite nice, I’m not always able to make them work.  I’m thinking right now of the wise words of a particular ugly construction guru who would most likely look disapprovingly at my pretty layout that, from an RF point of view, didn’t look so pretty. I am not a great experimenter as, if my builds don’t work after a modest amount of troubleshooting, I have a tendency to retire them to a box on a shelf to keep company with the other projects that “almost made it”.

A few days ago, I received a message from Eric ZL2BMI, who noticed that my version of his rig hadn’t lived up to the aspirations of it’s designer. A number of people made some very helpful comments underneath the post, and Eric also had some ideas. Here’s what he said,

“Originally I developed a prototype and then Bob (ZL2ASO) and I developed it further. Bob is very good at making cases and also milling the boards required for the RF amp. We have made quite a number of changes since the first article and my latest one (which measures just 75mm x 50mm x 25mm) is dual 80/40 m and about 5 watts out – and weighs about 110 gm) However, to come to the problem you had with output carrier on transmit – we did not have this problem with our first two or three rigs, or not to any great degree, probably because the power output was not much above 1.5watts. Then it started to show up – particularly with a 10 watt version I built for an amateur who goes hunting and wanted something with a bit more power to use in the backblocks. Looking at the circuit I realized that with the front-end coil tuned to the frequency in use, and still connected to the NE602, it would pick up some signal on transmit, and this would unbalance the 602. I confirmed this by watching the output (no audio in) and shorting the top of the aerial coil to ground – which killed the spurious output completely. I tried a diode switch – but while it helped, it wasn’t perfect (still 0.6 volt across it). Then I played with transistor switches and discovered something I had never realized – the collector of a transistor does not need volts on it to work. The simple fix is this – an npn transistor (small signal type eg BC547 etc) – the collector goes to the top of the aerial coil – the point where the cap goes to pin 2 of the 602. The emitter goes to ground and the base goes via a 10k resistor to the +ve T line. Despite the fact that the collector is at ground potential (via the coil), it has no effect on the tuned circuit with no volts on the base, but switches the signal hard to ground when +ve is applied. We have since modified all of the approx 12 sets we have built (most for others who use them in the field), with the addition of this transistor – usually mounted right on the top of the coil – to great effect.

Eric also writes about my build,

“It’s possible that leaving the input of the NE602 “open” (rather than grounded) may have left it susceptible to RF pickup. Or it may be that there is some other RF problem. We tended to use the same layout for all our rigs, and I know that some who varied the layout too much had problems. I have built about 7 or 8 of these rigs now, and since the addition of the “front end shorting transistor” there have been no problems with the RF “leakage”. I have retrofitted it to all the earlier ones I made for others. I will try to get some photos of my smallest rig in the next day or two and email to you. There are a few other small mods – to stop a “skwark” when going from transmit back to receive – but this is really just a resistor; and one or two others, mostly to do with getting more power out by better matching of the output transistors.”

Looking back at my notes, I did try disconnecting the antenna coil from the input of the NE602 on transmit, but they don’t show whether I actually shorted that input to ground on transmit. It’s very possible that I didn’t try that.  I have a feeling there may also be some problems with my layout.

My head is full of regens now, but I wanted to get this information up on my blog and into the hands of anyone who is thinking of having a go at this neat little rig. Eric, as promised, also sent some photos of his smallest rig. It’s a 2 band 80/40 version. -

ZL2BMI DSB Transceiver – 80/40M Version (Photo by ZL2BMI)


ZL2BMI DSB Transceiver – 80/40M Version (Photo by ZL2BMI)

The antenna coil is the one close to the front panel with a ferrite slug inside, and you can see the transistor he added to short it to ground on transmit -

ZL2BMI DSB Transceiver – 80/40M Version (Photo by ZL2BMI)


ZL2BMI DSB Transceiver – 80/40M Version (Photo by ZL2BMI)


ZL2BMI DSB Transceiver – 80/40M Version (Photo by ZL2BMI)


ZL2BMI DSB Transceiver – 80/40M Version (Photo by ZL2BMI)

Eric also sent along a schematic which looks like the way he gets the higher output power in his newer version.  I do believe he has written something for a future issue of SPRAT on this, so we may get a little more information in the next SPRAT.

ZL2BMI DSB Transceiver – 80/40M Version (Photo by ZL2BMI)

Thanks for the info Eric – and thank you for sending along the photos!




June 24, 2014

Building A WBR Regen Receiver For The 31M Broadcast Band

Note – some of the narrative in this blog-post assumes that you have access to, and have read, N1BYT’s original article on the WBR Receiver in the August 2001 edition of QST.

It has been almost 3 years since I first built N1BYT’s WBR – a regenerative receiver for the 40M amateur band. It was an intriguing design for me, as it employed a Wheatstone Bridge arrangement to minimize oscillator radiation into the antenna without the use of an RF amplifier stage. Unlike older tube designs, more modern semiconductor regens don’t generate as much RF energy, though although you might think that the need for minimizing radiation into the antenna is less, that is not the case. Radiation into the antenna can be the cause of one malady that plagues some regens – that of common mode hum. This circuit avoids that. It is quite a unique design. In fact, unless I’ve missed something, you have to go back to the 1920’s in order to find anyone who was designing along the same lines, as Mike Rainey AA1TJ relates in this post of his.

Such was my pleasure at the performance of this little receiver, I have often wondered how it would adapt to other frequencies. I did briefly try to make a general coverage version of it but for some reason, couldn’t get the regeneration stage to oscillate and gave up on it far too soon. Then, a few weeks ago, I started wondering about building a second WBR, for the 31M shortwave broadcast band. I already had a small aluminum enclosure into which I knew I wanted to put the finished receiver, and some months earlier, had cut a piece of PCB for whatever Manhattan project would find it’s way into the box, so getting the envelope of MePADS and MeSQUARES out and beginning to build didn’t take much of a leap, once I had found the initial inspiration.

A few rough calculations revealed the number of turns that would be required on the toroid for this new, higher frequency coverage, and they proved to be correct. I guesstimated that I should be able to achieve something of the order of 500KHz of coverage, which would allow the receiver to tune the 9400-9900KHz 31M band. I was also hoping to be able to cover up to 10MHz in order to be able to receive WWV and as it turned out, that was indeed possible. As well as a new frequency range, I decided to try a different configuration for the LM386 AF amp. N1BYT uses the 386 in it’s standard high-gain configuration that places a 10uF capacitor between pins 1 and 8 of the chip.  This has the advantage of providing high gain with low component count (an important consideration if you are to engage as many builders as possible), but it is also an approach that results in a lot of hiss. If you’re using a regen, you’re already dealing with a fairly high amount of hiss, so I wanted to at least remove some of that from the audio stages. In his Micro 40 DSB transceiver, Peter VK3YE uses the LM386 in a way that still gives high gain, but is a bit less hissy. Much has been written in the pages of SPRAT on trying to eke more gain from this venerable and much-maligned little chip, and Peter’s circuit appears to be based on LA3ZA’s ideas in SPRAT 116 (page 4). This circuit worked well in the Micro 40 I built, so I decided to use it in this, my second build of the WBR. I also incorporated a pre-amp stage, as suggested by N1BYT in his original article in the Aug 2001 issue of QST.

On completing the receiver, I noticed that it seemed a little deaf. The WBR was a project in the QRP-Tech Yahoo Group (Yahoo membership required), led by Chuck K7QO, and a few builders there also experienced lack of sensitivity. I am wondering if they made the same mistake that I made with both my builds of the WBR – to miss the fact that the full details of Z1 were not published in the original QST article. A later list of corrections revealed that Z1 was intended to be a metal strip measuring 1/8″ x 1/2″ and connected to ground via a short wire. In both of my WBR builds, I used a piece of stiff wire instead of the recommended metal strip, as detailed in the original article, and was perhaps inadvertently placing too little inductance at Z1.  Although Dan N1BYT does warn against increasing this impedance, lest it lead to detector overload, LA3ZA found that an inductor of 0.22uH at this point helped the sensitivity (and presumably didn’t overload the detector). Builders in the QRP-Tech Yahoo group experimented and found values between 0.22uH and 1uH to be optimum. I followed a slightly different route, first adding a 0.3uH inductor, consisting of 9 turns wound on a T37-6 toroid core. This increased the sensitivity dramatically, but also resulted in breakthrough from a local religious broadcaster on 1640AM. Instead of experimenting with lower values of inductance, for some reason, I added a simple BC band trap. At first it appeared to solve the problem, but then I noticed that although the AM breakthrough was much diminished, it was not, in fact, completely gone. At this point, I reduced the number of turns on my T37-6 from 9 to 4 and found that it did the trick. My WBR was still quite sensitive, yet without the disadvantage of breakthrough from strong broadcast signals. I left my BC band trap in circuit but would suggest if you build this circuit, you first experiment with the value of the inductor before deciding whether to add the trap.  Keep the value of inductance as low as possible and depending on where you live, a trap may well not be necessary. EDIT – Jason NT7S has also built a WBR using the schematic published here. He reduced the number of turns on his inductor to just 3 and found no need for a BCB trap, despite having a strong local station at 1390KHz that was causing detector overload when the number of turns on his inductor was 4. It pays to experiment! See the bottom of this post for more info on Jason’s experience with the BCB trap and for a video of his WBR in action. Jason also found that the BCB trap I detailed here does not have an ideal response. Details of that are at the bottom of this post.

I know there are some experimenters who are sitting on the sidelines waiting to build a WBR, but who are a little confused by the various mods published, and want to see more information on a successful build before going ahead with their own. By sharing detailed information on mine, I’m hoping a few more people will be encouraged to build their own version and share their experiences – the internet is a great way to do this. Many thanks to Dan N1BYT for graciously giving me the go ahead to show you a full schematic for this version that I built. The only changes I made to the core part of the circuit (the regen stage and the infinite impedance detector) were to employ a 10-turn pot for the regeneration (with a 33uF cap across it to stop the “whizzing” sound), the addition of the trap, and the substitution of Z1 for a small toroidal inductor, a mod that was first publicized by LA3ZA. The actual value of this inductor may require experimentation on the part of the individual builder but, and this does bear repeating,  it is wise to err on the side of keeping it small in order to avoid detector overload. My 40M WBR uses just a piece of stiff wire for Z1, and I have never heard any kind of breakthrough from all the signals my outside antenna deliver to that defenseless little receiver!


The description of circuit operation is contained in the original article which is readily available to ARRL members. Having read horror stories of unstable and unpredictable regen behavior by some builders (not of the WBR, I hasten to add), I was pleasantly surprised to find that the WBR has smooth regeneration control with no hysteresis, and is overall a tame set to operate. I have read that for solid state circuits, the designs that incorporate a separate Q-multiplier and detector (as does the WBR) tend to work better. Whether this is fact or hearsay, I am not sure. I have found it quite difficult to separate technical fact from folklore in the area of regens. This could be partially due to the fact that many builders, like myself, don’t have an in-depth knowledge of the workings of these circuits. Add that to the fact that regens are particularly dependent on good RF practices and solid physical construction, and I suspect that some designs are declared to be wanting simply because the experimenter didn’t build it properly. Likewise, due to lack of knowledge on the part of many builders, marginal regen designs are published and propagated by people who don’t have the ability to discern whether a circuit is “any good” or not. The world of regens seems to be a mystical and magical one inhabited by equal parts myth and fact.

I used 10-turn wirewound pots for both the regeneration and tuning controls (Bournes 3590S-2-103L). These pots aren’t cheap and if you need to save money, you can use a preset to set the approximate regeneration voltage range, and a regular 1-turn pot for the regen control, as N1BYT describes in the original article. A 10-turn pot does seem to give more precise control over the regeneration though. If you use a wirewound pot here, add a 33uF capacitor between the slider and ground, as shown in the schematic. This will eliminate the “whizzing” sound as you rotate the pot. I have an affinity for 10-turn pots, so I used them for both controls. I like the fact that I don’t have to bother setting the approximate regeneration range with a preset, as I have the full range of control voltages available to me immediately with the 10-turn control. The 10-turn seems to give better control over setting the receiver for the threshold of oscillation. Also, when using the injection of carrier to receive weak AM stations, the regen control can be used as a very fine tuning control in order to set the receiver to zero beat when in exalted carrier reception mode. Adjusting the regen control does have the effect of slightly shifting the frequency of the receiver, which can come in quite useful when wanting to make critical adjustments to the tuning of the receiver. Incidentally, this is a good reason to pay close attention to the physical construction of your WBR. You won’t be able to set the receiver for exalted carrier reception if it’s not stable enough.

The one disadvantage of using a 10-turn pot for the tuning is that you can’t see at a glance roughly where you are in the band. An arrangement of two 1-turn pots, one for bandsetting, and one for bandspread, will be cheaper, and will allow the operate to easily judge where he is in the band simply by looking at the setting of the main bandsetting pot.  Other arrangements might be possible. One thought that comes to mind is the use of an old-fashioned vernier reduction drive with a logging scale connected to a 1-turn pot. This would allow for quite accurate calibration of the dial and of course, the ability to see where you are in the band with one glance. The expense and trouble may not be justified, but if you already have one on hand, it would be an intriguing option. Expanding on this – how about a version of the WBR with plug-in coils for wider coverage? The padder and trimmer capacitors could be included in the coil form so that each frequency range could be adjusted individually. Well – that may be too fanciful an idea, but imagination is free! If you’re using a 10-turn pot, how about one of those turns counter dials combined with your own personalized logging chart? This is an idea I may try to implement in my build of this receiver at some point.

When setting the frequency coverage, you can run a short piece of wire from the antenna lead of a general coverage receiver close to the main tuning coil of the WBR and turn the regen control in order to make the set oscillate. Then, listening to the WBR oscillator in your receiver and with the tuning pot in the WBR turned fully clockwise, set the trimcap for the uppermost end of the desired frequency coverage. Twist the WBR tuning pot fully counter-clockwise, and use the 5K trimpot to set the bottom of the tuning range. With the values given, I was able to get my WBR to receive as high as 10.3MHz and lower than 8.6MHz, giving me the ability to pick any 500-600KHz tuning range within those limits. It would be a fairly simple matter to set the WBR to receive on any desired band of frequencies by changing the number of turns on the coil and/or the value of the 47pF padding capacitor (the capacitor in parallel with the trimcap).

Here’s the basic board. At this point, the only inductance between the center-tap of the main tuning coil (the big one on the yellow T68-6 toroid) and ground is a short piece of stiff wire.  Also, the AM BC band trap hasn’t been built yet (I didn’t know that I would need it). The cables for the various connectors have been bundled together in order to look neat for the picture -

On connecting this board up, the receiver seemed a little deaf, To be fair, although the original article doesn’t mention it, corrections to the article published in a future edition of QST did mention that Z1, the impedance between the center-tap of the coil and ground, should have been drawn as a metal strip 1/8″ wide, 1’2″ long, and grounded to the board with a standard piece of wire. I was using just a piece of wire, as you can see in the photo. This probably wasn’t providing enough inductance. I clipped part of the wire connecting the center-tap to the ground plane, and inserted an inductor consisting of 9 turns of wire on a T37-6 toroid.  This is an inductance of about 0.3uH. Wow – what an improvement in sensitivity! Unfortunately, a local broadcaster whose transmitter on 1640KHz is just a few miles down the road from me, was breaking through. This was presumably caused by detector overload as a result of increasing the impedance at Z1. I added a simple AM broadcast band trap which I initially thought had solved the problem, but later discovered that the breakthrough was still there, albeit at a much lower level. I rewound the T37-6 toroid with 4 turns, for an inductance of about 0.05uH. Bingo! Breakthrough gone! In retrospect, a better way to proceed would have been to attempt to find an optimum value for the inductor that would have given good sensitivity while still avoiding overload of the detector, before adding the trap. Here’s the board after the trap was added, and the center-tap of the coil modified. The stiff wire to ground was cut and a 10M stand-off resistor inserted in it’s place to help with rigidity, before adding the inductor wound on the T37-6 toroid. This is the first version of the inductor, with 9 turns. The later version had just 4 turns -

Time to box it up. I’ve had a couple of small aluminum cases from LMB Heeger that I bought because I thought they’d make great cases for small projects.  It’s their model #143 on this page (available in 3 different finishes) and one thing I particularly like about it is the small lugs on the top cover – 2 at the front and 2 at the back – that prevent the front and back panels from flexing inwards. This feature helps to make it a very stout little case. This enclosure was the obvious choice to make a nice compact receiver out of this version of the WBR -


After a few hours of listening to it (what fun!) the AF amp began to make occasional motorboating-type noises. It appeared that audio peaks were changing the regeneration point and pushing the set into slight oscillation. The battery was still at about 8.5V, so this should not have been happening. While researching possible causes, it occurred to me that in reality, this receiver was going to spend nearly all of it’s time in my shack, meaning that I could run it off the shack gel cell power supply. Instead of solving the issue I took the easy way out, removing the battery holder and fitting a jack for a DC power supply, along with a series diode for polarity protection. The receiver can easily handle the ~0.6V voltage drop from a 12V supply, and if you use the reverse diode to ground method with a bigger 12V supply, it will blow the diode like a fuse if you inadvertently connect the power to the set the wrong way round.  With a small 9V battery, it’s internal resistance should prevent it from passing enough current to blow the reverse diode. Also, you cannot afford to drop 0.6V from a 9V supply, hence the reason for using the method pictured in the schematic. The holes that were previously used to mount the battery clips became tie points for the antenna cable -

My downstairs neighbor’s cat was standing over the WBR in this next shot. You can see his whiskers in the top right-hand side of the frame. I think he’s interested in regens. In these next 2 shots, you can also see the lugs on the top cover that help to make this such a stout little case. It’s a neat little receiver -

From time to time, I am asked what knobs I use for my projects. They are manufactured by Eagle Plastics. I get them from Mouser, though I’m sure they’re available through many other outlets.

The large one I use for tuning is part # 450-2039-GRX (the exact same knob is also available from Radio Shack, and is RS catalog # 274-402

The medium sized ones I normally use for AF gain, RF gain etc are part # 450-2035-GRX

and the small ones I use for AF gain, RF attenuation, and regeneration in this receiver (because space was at a premium) are part # 450-234-GRX

For wiring up the connectors, I use a thin cable consisting of 2 conductors plus a shield. It’s made for lavalier mics, so is skinny and flexible – ideal for wiring up pots and jacks. I used to get mine from a local pro-audio store that recently closed down, so had to find a new supplier. Most places online seem to either want to sell large reels of the stuff or, if they do sell it by the foot, charge too much. I found a place in Connecticut called Redco that sell it by the foot for a reasonable price. On top of that, they will ship via first class USPS mail, which helps to keep the cost down. I haven’t tried any of this new batch yet, but it’s a quality cable made by Mogami (type W2697), and it looks like it will do the trick.

RF connections (like from the antenna connector to the RF attenuation pot) are made with Belden 8215 RG-174/U.  It’s skinny and flexible.

Following are a number of videos designed to show different aspects of this regen, My old camera takes awful quality video (sorry about that) and limits the clips to 3 minutes, which is why there are several videos instead of one long one.

This one shows how the set has quite a narrow bandwidth when set to the point just below oscillation. In all these videos, the WBR is directly driving an external speaker. There is no external amplifier connected -

In this video, you can hear how the audio bandwidth broadens out considerably when the set is oscillating -

Tuning around the 31M band. There aren’t many strong signals, as band conditions generally have been poor. It’s not due to any shortcomings in the WBR -

This video shows how stable a homebuilt regen can be. I could have made mine more impervious to knocks by holding the toroid with a nylon screw and washers, but that might have introduced more long-term drift -

Another video just tuning around. It cuts off rather suddenly at the end -

This one shows how effective the technique of exalted carrier reception can be – and you can do it with a regen! -

It seems fairly sensitive, and quite stable, both in terms of it’s response to physical knocks, and the long term drift. I like regens over direct conversion receivers, because of their ability to demodulate AM as well as CW and SSB transmissions. I suppose that with a very stable VFO (a synthesized one perhaps) a DC receiver could receive AM in exalted carrier mode but with a regen you can actually take it out of oscillation and receive AM with no carrier injection. The regenerative detector is a versatile one.

The only criticism I have of this particular build of the receiver is that I seem to have a noisy LM386. The 386 stage is generating a type of low frequency random scratchy noise that wasn’t present the last time I used this circuit configuration (in the Micro 40). I have heard that there is enough variation in these chips such that you can get a particularly noisy one. This chip was part of a batch of cheap ones I bought from eBay. I just ordered some LM386N-4’s from W8DIZ. They seem to be quality parts from National Semiconductor and because they are LM386N-4’s, they have higher power dissipation and a higher max supply voltage (16V) than the others (12V), which can’t be a bad thing. I may, at some point, put one of Diz’s 386’s in place of my eBay cheapy-chip in this set.   EDIT June 25th 2014 – I just replaced the eBay cheapy LM386 with an LM386N-4 from W8DIZ and the scratchy rumble is gone! The ones that Diz sells are National Semiconductor devices and of course, they still hiss, because they are 386’s being used in a high-gain configuration. With a good 386 though, the noise is just a smooth hiss that is much easier to deal with than the scratchy rumble of the bad part.  Here’s what the sub-par IC sounded like. The hiss is normal for a LM386 used in a high-gain configuration, but that scratchy rumble is most definitely not -

Jason NT7S built a WBR using the schematic in this post. Instead of building it for the 31M band, he built his for the 40 amateur and 41M broadcast bands. If I remember correctly, he set his coverage for 6900 – 7500KHz, which gives him coverage of the pirate BC band at around 6925KHz ±, 40M from 7000-7300, and 41M from 7200 – 7450KHz, though it does make tuning SSB and CW a bit tricky. If you want to make tuning SSB/CW easier, then you can limit the coverage of a 40M RX to just the amateur band. If you’re a hpone-only person, you could have your WBR tune 7150-7300 (in the US) for much smoother tuning! Before removing a turn from his antenna-input inductor, Jason was getting breakthrough from a strong local station on 1390KHz – even with the AM BCB trapin place. He did a sweep of the trap on his scope and here was the result.  The marker is at 1390KHz – the strong undesired signal -

Note how the attenuation of the trap is only about 5dB at the frequency of the unwanted signal. I may take another look at the values of the components in this trap with a view to increasing the cut-off frequency but my first step will be to also remove a turn from my antenna-input inductor to reduce it to just 3 turns and see if I can also manage without the trap.  Thank you for this input Jason!  Jason’s WBR sounds great. It is the first time he has successfully built a regen, and I’m tickled pink that I was able to inspire him to build this one. I don’t think he was disappointed either -

Jason sent me this picture of his WBR, all wrapped up in a smart blue enclosure.  Aluminum for the bottom half, and PCB material for the top half, if I’m not mistaken. I like the attractive pattern of holes for the speaker cut-out. Is the bottom half from an LMB Heeger Crown Royal enclosure, by any chance? Nice! -

Jason NT7S’ WBR in it’s attractive blue enclosure. Jason built his for coverage of 6900KHz – 7500KHz.

This successful build of another WBR is helping to pull me down the rabbit hole of wanting to build the perfect regen. My goal is to build a really good general coverage regen on a nice-sized chassis with plug-in coils for band changes. I am starting to collect parts with this goal in mind and being relatively inexperienced with regens, have many questions in my mind, such as

- semiconductors or tubes?

- separate detector and regen stage, or an oscillating detector?

- an FET or a bipolar detector?

- high mu, or low to medium mu tubes for the detector?

- throttle capacitor with ball drive, or resistive regeneration control?

- toroids or traditional coils?

- any other considerations?

Although I’m secretly looking for a solid technical reason to make my dream general coverage regen a tube design, a semiconductor one would probably be best, as long as I’m not potentially giving up anything in performance. If any experienced regen builders are reading this and have any ideas, I’d love to hear them.

Oh – and the downstairs neighbor’s cat, whose whiskers you saw poking down from the top of the frame in the shot of the WBR from the back? That’s Stephen. He likes regens (I think). Here he is wondering what magical electromagnetic signals there are out there in the ether. He might also be looking at a bug -

Such an enjoyable little receiver. Thank you for the circuit once again N1BYT.

October 19, 2013

The VK3YE Micro 40 DSB Transceiver

I have attempted to build 2 DSB transceivers now with limited success – a Manhattan version of G3WPO and G4JST’s DSB80 – here and here  (the original kit version which Richard F5VJDD sent me for reclamation, worked fine) and the ZL2BMI rig, here and here. Both of them worked FB up to and including the TX driver stages but as soon as I added the PA, I had constant feedback/oscillation, even when not modulating the TX.  In retrospect, I think a simple partition to separate the driver and final from the earlier stages of the TX would have done the trick in both cases (or even building the driver and PA on the other side of a double-sided board.)

The kit version of the DSB80 that Richard F5VJD very generously sent me was a fantastic piece of nostalgia (I owned one as a young man) and a very satisfying project, but I still wanted to be able to build at least one DSB transceiver from scratch and have it be fully operational.

Enter Joel KB6QVI from stage left. Joel is an avid homebrewer of QRP rigs – both from kits (he’s currently working on a BitX using the original board from India, which he is putting on 40M) and from scratch, Manhattan style. Joel is a fan and big user of the MePADS and MeSQUARES from QRPMe (as am I) and has constructed several QRP rigs using them. Joel and I communicate on Twitter, on which he was singing the praises of the VK3YE Micro 40 that he built. I think he was trying to get me interested in building something again, and his enthusiasm couldn’t help but pique my interest. I’ve made a number of jokes in the past aimed squarely at that trusty favorite of many a QRP homebrewer – the LM386. I usually end up using it with a 10uF cap between pins 1 and 8, which gives lots of gain but also quite a lot of noise.  Joel told me several times about the configuration of the LM386 AF amp that Peter uses in this little rig which still gives enough gain to easily drive a speaker, but has much lower noise than the typical high gain configurations of this chip. Then one of my other non-ham projects came to a temporary pause and I got to looking at this enclosure which I originally made for the second beta run of NT7S’ CC-series transceivers. That beta run ended up using a much smaller board and a smaller custom case, so this blue enclosure has been sitting on the shelf for the last 2 years, just waiting for something to be built in it -

The blue enclosure that was originally made for the second beta run of the Etherkit CC-Series transceivers. The 2 pushbuttons on the front were intended for the CC-Series beta. Only one of them would remain for the Micro 40 DSB rig.

Joel got me to thinking that a little DSB rig in this case sure would be neat, so I rummaged in the parts drawers and fitted the controls and connectors I’d be using if I were to build the Micro 40. I kept telling myself that, as I was trying hard not to commit myself at this point :-) Note the little electret condenser mic insert in the middle. I thought an internal mic would make it easier to use, especially if out in the field. Also note that even though the enclosure is 2 years old, the coat of lacquer I applied has kept the copper looking pretty good -

The trouble is, on seeing a neat little case like this with a few controls and connectors installed, it’s hard not get enthusiastic about actually building it. Notice the small hole drilled above the right-hand pot for the locator lug. I used to break these little spigots off until an incident with my Fort Tuthill 80, in which the volume pot came loose and twisted round. I don’t know exactly what happened, but one of the potentiometer terminals contacted something else, causing a blue LED that was being used as a voltage regulator to blow. From that point on, I started using the locator lugs to help keep the pots in the same position -

At this point of course, I was committed, and set about building what I hoped would be the first DSB rig I’d build from scratch that would actually work.   I have made a few changes to VK3YE’s schematic, and will describe them here.  I hope you don’t mind that instead of using the conventional symbols for the 2 chips, I have represented them as rectangular blocks. It makes it a bit harder to figure out what’s going on with the circuit, but easier to visualize the physical layout when building -

I do have one problem with this rig. In fact, it is the only issue I have with my version, and that is a loud feedback howl from the speaker on going from TX to RX. I am thinking that Peter’s method of directly keying the mic amp with the PTT button would switch the mic amp off a fraction of a second before the relay kicked in and switched the LM386 RX AF amp on, thereby avoiding the feedback perhaps? This loud howl, which you can hear in one of the recordings linked to at the end of this post, was the only thing I wanted to cure. Everything else about the rig is great.  Note – see point 10) at the end of this list.

2) I changed the value of the cap that couples the output of the mic amp to pin 1 of the NE602 from 1uF to 0.1uF (100n). On-air reports indicated that my audio was a bit bassy. Admittedly, I was using a microphone that was designed for recording and broadcasting applications, and was way overkill for this use, but I figured it wouldn’t hurt to gently roll off some of the lower frequencies in the TX, regardless of what mic was used. It did help, but I’m now thinking that the value of that 1uF cap in the base lead of the mic amp could stand to be reduced also. Feel free to experiment :-)

3) In Peter’s version, the cap that couples the collector of the BD139 final to the output network is a 47nF.  I didn’t have any of those. I could have put two 100nF caps in series but figured that a single 100nF would work just as well.

4) Peter bypasses the wiper of his tuning pot to ground with a 47nF cap.  I used 100nF.  No biggie. Perhaps I should have used a 10nF instead……..

5) Peter bypasses pin 5 of the NE602 to ground with a 47nF cap. I used 100nF.  He couples pin 5 of his NE602 to the top of the AF gain pot track with a 220nF cap, while I used 100nF. My substitutions are based on what I have in my parts box, rather than any meaningful analysis of the circuit :-)

6) For tuning, Peter uses 2 banks of diodes, each consisting of four 1N4002’s with a switch to achieve the frequency coverage in his rig. With the switch in circuit, both banks of diodes are used, and with the switch out of circuit, just the one bank of 4 diodes are connected between the resonator and ground. He also has a 10uH inductor in series with the ceramic resonator. My 7.2MHz resonator was obtained from hamshop.cz and seems to have very desirable properties. With no series inductor, and just one 1N4004 diode (I didn’t have any 1N4002’s so I used what I had), I achieved coverage of 7207 – 7335KHz.  Placing a 3.3pF cap across the diode (shown as Cx in the schematic) changed the coverage to 7183 – 7295 – almost all of the phone portion of the US 40M band. What luck! Both Jason NT7S and Joel KB6QVI did tests with 7.2MHz resonators from hamshop.cz and achieved very similar coverage. They don’t always have these resonators so my advice would be buy a small stash of them when you see them in stock. These things are like gold! Not all ceramic resonators are created equal – others have different amounts of coverage.

The key advice with ceramic resonators in rigs like this is to experiment in order to get the coverage you want. However, if you are in the US, with the band going up to 7.3MHz, and you have one of those resonators from hamshop.cz, this circuit should give you excellent coverage. Other resonators will most likely give very different results, and you may need to experiment with different diodes, different numbers of diodes in parallel, and perhaps a series inductor (which I believe has the effect of extending the bottom end of the frequency swing.)

7) Pin 1 of Peter’s LM386 is connected to ground via a 47uF cap and a 33 ohm resistor. I didn’t have a 47uF, but I did have a 33uF.  Given the wide tolerances of electrolytics, it probably doesn’t matter much but I substituted a 33uF cap and a 47 ohm resistor. There is an interesting article in SPRAT 116 on page 4 that talks about the use of the feedback resistor and capacitor between pins 1 and 5, as well as the use of an RLC network between pin 1 and ground to create a high gain amp that has a peak at 500Hz for CW reception. With a resistor as low as 3.3 ohms, gains of 74dB and even higher were achieved. This configuration doesn’t use an inductor, or such a low value resistor, but still has plenty of gain without resort to the the more common method of connecting a 10uF cap between pins 1 and 8 – a method that has (in my opinion) done a great deal to give the 386 it’s reputation for high hiss. It does have a lot of hiss when used this way, so don’t do that – use this circuit instead. It is far more pleasing to listen to!

8) I added a 1N4148 diode from pin 8 of the LM386 to ground as detailed in SPRAT 155 page 26. This is designed to help with squeal on going from RX to TX. It did seem to help a bit, but my bigger issue was the squeal in going from TX to RX. Feel free to leave it out, or put it in. Whatever you’d like to do!

9) I really liked the receiver and was surprised at how good it sounded, considering the simplicity. However, at certain times of day, I did experience a small amount of low level breakthrough from AM broadcast stations in the 550-1700KHz band. Joel KB6QVI didn’t have this with his Micro 40 but then, he lives in a less built-up area, about 12 miles outside Medford, Oregon.  I am in the city of Oakland, in the San Francisco Bay Area, and close to many AM broadcasters. This breakthrough didn’t actually stop me from copying any ham stations but it was there and as such, was mighty annoying. Then I noticed that while the problem occurred when I connected the Micro 40 directly to my outside antenna, it disappeared when my ATU was inline. A quick look at the schematic of the ATU revealed that it was a high pass filter (as many ATU’s are). Aha – problem solved!  I installed a simple high pass filter permanently in the receive antenna lead and the breakthrough completely disappeared. The receiver now sounds great.

If you don’t live close to many powerful AM broadcasters, or you are planning to use this rig only out in the field, in the boonies, then you could most likely leave the AM BC band filter out. However, if there is any uncertainty about the circumstances under which you’ll be using it, why not install it? It’s just a couple of toroids and 5 caps (unless you have 2,000pF caps in which case it’s only 3 caps, as you won’t have to double up on the 1,000pF caps).

10) A word about the bypass cap on the TX +ve supply line – the one marked Cy. In Peter’s version, this cap is 220uF. His mic amp is permanently connected to the +ve supply and switched off by a 100nF cap in the emitter lead, which is shorted out by the PTT button on TX. To achieve this, his PTT button keys the -ve side of the TX/RX relay. I understand now why he did this but in my “wisdom” I decided to permanently connect the mic amp +ve supply line to the TX driver final supply line and key them together. A side effect of doing it this way is that when the PTT is released, the remaining charge in the 220uF bypass cap on the TX supply line keeps the mic amp energized for about a second, causing a loud squeal in the speaker. I found that decreasing the value of Cy to 10uF gave a much shorter squeal that I could live with. I am hoping that this lower value of capacitance will still bypass any audio on the TX DC supply line.

As is usually the case with such projects, I built the AF amp first. Touching the input of the amp chip (in this case an LM386) to hear a loud buzzing sound always provides good positive feedback (pun intended :-) ). In the following 2 pictures, the AF gain pot hasn’t been hooked up yet. The curved red lead is a temporary power connection -

The MePADS and MeSQUARES from Rex at QRPMe have become a firm favorite of mine. Every Manhattan project I build uses them. I just realized that I can buy SMT chips from now on if I like, as the sheets of MePADS contain pads for mounting SMT devices too.

The next stage was the point at which things started to get interesting. This is the VXO using a 2N3904 and a 7.2MHz ceramic resonator. Thru-hole resonators for frequencies such as 3.58 and 3.68 are easily available, but ones for 7.2Mhz are a little harder to come by.  When I discovered that http://www.hamshop.cz stocked them, I ordered 3 and gave away one, leaving me with just 2. Now I’m realizing that I should have ordered more, because on firing up the VXO, I found that the coverage with just one 1N4004 diode used as a tuning diode and no series inductor, was 7220 – 7335KHz. Of course, 115KHz of swing is quite a lot but what surprised me more was the fact that this 7.2MHz resonator was happily being pulled so high above it’s nominal frequency. A 3.3pF capacitor placed in parallel with the tuning diode brought the tuning down to 7169 – 7297KHz, which I consider very satisfactory, encompassing as it does the majority of the phone portion of the US 40M band. I like that the upper limit is 7297 as this means I won’t inadvertently transmit out of band. What a cracking little resonator! The resonator is the blue thing just below and to the left of the tuning pot (the top pot) in the photo below -


Then, things started to get really good, because I built the VXO buffer (an MPF102) and installed the NE602. At this point, I could connect an antenna to determine whether I would be able to hear signals. The first thing I usually do at this point is to turn the power on my K2 right down to 01.W and give a few short bursts of carrier. Even without an antenna attached, the little DC receiver picked it up with no problem and I knew we were in business. The antenna input coil is on the lower left of this next picture. You’ll notice that I have also built the 2N3904 mic amp. The blue wire was a temporary connector to the BNC at the rear of the case, so I could plug in the antenna for listening. If you look closely at the AF gain pot, you’ll see that I soldered a short grounding wire from the body of the pot to the chassis.  Without this lead, you may get hum whenever your hand comes close to the pot -

This is always the point at which building transceivers gets tricky for me, as I spend so much time listening to the receiver, I lose momentum. I was even beginning to wish that I had set out to build just a receiver.

Here is a synopsis of what had been built up to this point. I had removed the PTT pushbutton to make soldering in that area easier -

You know how when you move house or apartment, you reach a point where you feel as if you’re very nearly done? That’s usually the point at which you are only halfway through (or even less.) All I had to do to turn this rig into a full transceiver, was add driver and PA stages, and I was in business. It wasn’t quite that simple, as I also had to cut and fit a partition, and wire up the transmit/receive switching. Here’s the first view of what I thought at the time was the completed rig. If you’re sharp-eyed, you’ll notice that the electret mic has been replaced by a phono socket.  This was because I kept getting a motorboating sound on TX which was coming from the mic amp. Peter VK3YE said that I should either try a dynamic mic, or try lowering the gain of the mic amp if I wanted to use it with an electret mic.  I decided to take the easier route, and replaced the internal electret mic with a mic socket. That way, I could experiment with different dynamic mics to find the best one. Also, the 2N3053 driver is fitted with a heatsink, wheras the BD139 final is not. KB6QVO said that his driver got warm, while his final ran cool.  For this reason, he used a heatsink on his drvier, but allowed the final to go au natural.  I simply copied him ( it was easier than doing my own research!) -

Well, this little rig works well. See the video at the end of this post to see and hear it in action. As mentioned before, the only issue I was having with the receiver was low level breakthrough from local AM broadcast stations. It was the only downside to what was otherwise a neat little receiver. I won’t retell the story related in point 9) near the beginning of this post, but the simple high pass filter I installed to attenuate signals in the AM BC band did the trick. Here’s a view of the completed transceiver with the high pass filter installed in the receive antenna line. The 2 toroids wound with green wire and the 5 blue caps in the upper left-hand side of the picture are the receive-only high pass filter -

I cut two small triangular pieces out of the bottom of the partition on both sides to allow wires to pass through. One cutout was a little bigger, as it had to allow more wires through. In the following picture, you can just see one of the triangular cutouts (I cut the pieces out with a flush wire cutter – perhaps not the best idea, but the cutter seemed to be undamaged) -

I suppose that at this point extra images just seem gratuitous, but perhaps one of them will contain an extra detail revealed by a slightly different camera angle that will help a hopeful builder somewhere -

This one might be useful in determining what goes where -

Here’s a view of my VK3YE Micro 40 from the back. The hole on the right is unused.  I will cover it up with a piece of electrical tape on the inside -

And here is what this little DSB beauty looks like with it’s cover on, and viewed from the front -

You might wonder about the practicality of covering a tuning range of over 100KHz with a 1-turn pot.  In fact, you are covering this range with just 300 degrees of rotation, which is not much.  The tuning is a bit touchy but I was surprised to find that I got used to it.  If you want, you could use a 10-turn pot for tuning, or a 1-turn pot fitted with a turns counter. The value is not critical – I often use 10K pots for tuning. One advantage to a 1-turn pot for tuning in simple rigs is that you can see roughly where you are in the band with a quick glance. Also, it is great for quickly scanning the band for activity.  A second 1-turn pot for fine tuning would make it easy to exactly tune stations, while still keeping the cost lower than a 10-turn pot or a turns counter. I’m thinking a 100K pot for rough tuning and a 5K for the fine adjustments.

I plug a little MFJ-281 ClearTone speaker into the phone jack and it sounds great, with easily enough volume for comfortable listening. Current consumption is about 30mA on receive with no signals, peaking up to 100 – 125mA on very loud signals. I didn’t measure the current consumption on TX.

Here’s a recording of me in QSO with KE7NCO 180 miles away. At this point, the 220uF capacitor was still in use bypassing the +ve supply line to the TX, causing the very noticeable feedback when switching from TX to RX -

On changing that bypass cap from 220uF to 10uF, the feedback reduced considerably. Here I am in QSO with N7UVH. He is my greatest DX to date, being 736 miles away – not bad for 800mW of DSB (equivalent to 400mW of SSB) -

Here’s a video demonstration of the receiver (boy, I really need a new video camera. This one is 10 years old and limited in resolution!) -

This was me checking into the daily Noontime Net on 7268.5KHz with Jim W6FHZ, who is 180 miles from me -

On the scale of dollars spent for fun and satisfaction had, this little rig is high up there on the list. I built mine with components I had on hand but even if you had to purchase all the parts, I calculated it would cost you around $23 (not including shipping from the various different suppliers.) This is one fun little rig – and it wouldn’t be hard to whip up a simple matching network for an end-fed halfwave antenna, and take a small battery with you for some portable fun.

As an aside, I went to Pacificon last weekend and had the pleasure of meeting Steve the Goathiker, WG0AT. Here he is at the Buddipole booth holding the packet that contains his entire portable station – a KD1JV MTR with a small key and end-fed half-wave antenna. Fantastic!

Note on Ceramic Resonators – sourcing suitable resonators for projects like this can be tricky. The supply of hamshop.cz 7.2MHz parts seems to have dried up. Mouser have some 3 terminal 7.2MHz ones that, even with the internal capacitors out of circuit, wouldn’t resonate much higher than 7.15MHZ (myself, NT7S and KB6QVI all got the same results). More recently, Patrick W9PDS found some 7.3728 MHZ resonators from Mouser that seem to fit the bill. Joel KB6QVI just reported that with a 27pF cap across this part, and using a polyvaricon for tuning, he is getting a freq coverage of 7.175 – 7.303MHZ. It sounds like this would work in the Micro 40! You’ll need to experiment a bit with parts values to get the coverage you want, but suitable ceramic resonators for 40M are getting as rare as hens teeth, so you might want pick up a few while you can. You can find these ones (while supplies last) here.

September 22, 2013

Building and Installing the K60XV 60M Adapter and Transverter Interface Option For The K2

When I first built the CW-only 10W basic K2 about 2 years ago, I was fairly certain that the basic version was all I would need.  Indeed, at the time, it was. I had made a commitment to operate QRP CW exclusively and was having no trouble sticking to that. So although the basic K2 was a fairly good chunk of change, I was able to justify it. Thing is, that it just begs to be added to. There was plenty of empty space left in the case and although some options, such as the 100W internal PA, promised to relieve me of a good portion of my ham radio budget, there were others that required a lot less (oooh – 160M receive and a separately-switched receive antenna for $40, ooh – SSB for $130, ooh – a nice AF filter for $90, ooh – well, you get the idea.)  So it was that in short order, I ended up with the K160RX option, the 20W internal ATU, and the KSB2 option.  In that post, I did mention that the K60XV 60M adapter and transverter interface option would most likely be the next to be added, and that is how it panned out a few days ago.

Living just 50 miles away from Elecraft is great. I called and spoke with Madeleine in the morning, and the next day this arrived via US Priority Mail (First Class Mail would have cost just 2 bucks and very possibly would have gotten it here in a day also, or 2 days max). The small envelope to the right was an extra headphone jack (just in case.)  Whenever I order from Elecraft, I include a few of the more commonly needed extra parts. Heavily used headphone jacks on the K2 tend to wear out over time – especially if physical stress is placed on them, such as that from a bulky adapter. This probably won’t happen to mine but it will be good to have if, some years down the road, I need a new jack and the current part is no longer available -

Jingles, a new addition to the family (who is blind, but you’d never know it) was trying to ascertain what a K60XV is and what it means for her -

She then figured it out and cast her vote -

There aren’t many parts, and the board doesn’t take long to assemble.  Modification of the main RF board inside the K2 in readiness for the installation probably takes as long, but I’ll get to that a bit later. Here’s the K60XV board after assembly -

I suppose it’s hard to imagine how I can make such a meal out of a fairly simple project by taking so many pictures, but I sure do like taking pictures -

There were a small number of inconsistencies and points I felt could have been made a bit clearer in the assembly manual. I’m going to send Elecraft an e-mail with my suggestions for corrections in the next few days. I won’t detail them here, as it may well confuse if they have been corrected by the time you read this. I will mention the more salient ones in the text of this post though.

There was a diagram showing which side of the board the multi-pin connectors P1 and P2 should be soldered. I found the diagram a bit confusing, so figured it out by looking at the board and the space it was going to fit into in the K2. This photo should help though. look at how wonderfully thick that high-quality board is – and just get a gander at those large plated-through holes. Beautiful!

After finishing the board, the main RF board of the K2 has to be modified to accept the new option.  A jumper has to be removed, and a small number of parts have to be removed and new parts substituted – the exact details of which depend on which revision of the main board you have. Good quality solder-wick is a boon here, and helps to suck up all the solder from those plated-through holes. These boards are well-made, so will not be damaged, provided you have a good iron, good solder-wick, and don’t completely fry the thing :-)  The other main modification is the addition of a length of RG-174 coax to the main board as shown here -

The assembly manual recommends putting a short length of heat-shrink tubing over one end of the co-ax as follows (to prevent the braid from inadvertently making contact with the board). The screws that secure the PA transistors to the heatsink are prevented from falling out with small strips of electrical tape applied to the top side of the board. One of them is visible here -

I thought that it would be a good idea to use heat-shrink tubing on the other end of the cable too, so I did just that.  I had some tubing that was a little narrower in diameter than that supplied with the kit, yet it still fitted over the co-ax, so I used that instead -

A view from the top.  There are 2 sets of holes for the transverter input/output sockets. The user can either install BNC’s in the top cover, or RCA phono sockets in the lower heatsink plate. I decided to go with the latter, and you can just see the 2 phono sockets poking out of the back in this shot. The K60XV board is at the back of the K2, to the left of the K160RX board. The large plated-through holes are so you can still easily adjust the 40/60M, 80M and 30M bandpass filters without having to remove the K60XV board -

One more shot, showing the 3 options I now have installed in the main case (20W internal ATU in the top cover, but that is not visible here, of course) -

On finishing the installation, and switching the rig on, 60M was coming through just fine.  Readjustment of the VCO inductor, L30, was required to keep the VCO voltage within an acceptable range for all bands. This is fully covered in the K60XV and K2 manuals.  I completed the alignment process and was soon hearing much band noise on the 60M amateur band (no activity heard until the next evening) and plenty of AM broadcast stations on both the 60M and 49m broadcast bands.  Funnily enough, the first signal I heard was Radio Havana, Cuba, promoting a film screening that was happening just a few miles away in San Francisco!  I have since heard a few ragchew QSO’s on 60M USB as well as W5GHZ calling CQ on CW, though he didn’t hear me calling him. There was one slight problem with the testing process of the transverter interface part of the option. When in transvert mode, the K2 can develop a low-level signal (1mW or below) to send to the transverter. Firstly, I noticed that when set to an output power of 1mW (at the transverter output phono jack), the K2 was only generating 0.2mW. A few Google searches revealed something that was also in the assembly manual, had I taken the time to read it thoroughly. When using the internal 20W ATU, it has to be taken out of auto mode in order to develop the full 1mW. You can do that either from the menu, or directly from the front panel by pushing the “Display” and “Ant 1/2″ buttons simultaneously. Problem solved? Not quite, as the K2 was now putting out about 50mW – more, but still not enough.

At this point, it was 2:30 am and time for bed. I went to sleep, and woke up the next morning concerned that I had made some kind of boo-boo with the board assembly and/or installation. However, another Google search revealed yet another solution that, had I not been so dog-tired the night before, I would have seen in the assembly manual.  For anyone with a K2 that has the internal 20W ATU, there is a 47 ohm resistor at the input of the op-amp on the ATU control board that can load down the transvert interface to the point where it won’t develop the full 1mW output power. The recommendation is to swap that 47 ohm resistor for a 470 ohm (supplied with the K60XV kit). I did so and – bingo! – the K2 was now putting out 1mW into the transverter output when in transvert mode. I love it when things work :-)

This would be a good time to talk just a little about using the K2 to receive out of the ham bands. Being optimized for the ham bands, with bandpass filters centered on those portions of the spectrum, sensitivity does fall off as you tune away from them. Then as you continue tuning, at some point, the VCO loses lock and you can’t tune any further. However, within these limitations, you can cover most of the SWBC bands with the K2, albeit at reduced sensitivity for some. If you’re a casual SWL only, the reduced sensitivity isn’t as important an issue at it might seem. Each K2 will vary in terms of it’s out of band coverage and sensitivity outside the bands for which it was designed, but this report from Neil WA7SSA will give you an idea of what you can expect.

“But the K2 isn’t set up for AM”, I hear a few people say, “it only receives CW and SSB.”  I have actually seen this argument made in a few online forums and of course, the K2 receives AM quite well, as long you take care to accurately zero beat the carrier. Doing this is easy. Let’s say yours is set up for a CW offset of 500Hz. You select either LSB or USB. I’ll use LSB for this example. Tune away from the carrier until you reach zero-beat with the spotting tone. Let’s say that zero beat occurs at 9580.52KHz.  Subtract 500Hz form this figure and that is where you need to tune the receiver. In this example, you would retune to 9580.02KHz.  Easy! If you were using USB, you’d add 500Hz. Use whichever sideband provides nicer sounding audio. Of course, the width of the crystal filters limits how good an AM broadcast station can sound on the K2, but you get used to the slightly restricted audio. Sensitivity on the 49M BC band is a little low but you can still listen to the stronger regulars on that band (Arnie Coro fans take note!)

Here is a short clip of Radio Habana, Cuba on 6000KHz in the 49M band recorded from the headphone socket of my K2 using the 7-pole crystal filter in the KSB2 option. This filter has a -3dB b/w of about 2.3KHz – less than is ideal for AM SW broadcast reception. This should give you an idea of what to expect when listening to SWBC stations on the K2 -

Funny how that back panel continues to fill up with connectors…….

And if it’s not too much of an imposition, please allow me just one picture of the new addition to the family. This is Jingles. She is 7 years old, blind, and completely adorable. Unfortunately, just like my other 2, she has shown no interest so far in learning the code but she has valiantly (and successfully) taken on the task of leaving little tell-tale pieces of fur on my various homebrew projects as a reminder of her presence :-)

June 24, 2013

The Etherkit CRX1 – A Handy Little VXO-controlled 40M Receiver Kit

Filed under: Ham Radio,QRP — AA7EE @ 5:14 pm
Tags: , , ,

Just a quick post to mention that Jason NT7S has developed what looks like a neat little 40M receiver kit, the CRX1.  It is VXO controlled, covers about 7030 – 7034KHz, and comes with  muting, transmit/receive switching and user-enabled sidetone, as well as a port for connecting an external VFO.  It sounds like a great little receiver for combining with home-brew transmitters and with the external VFO port, there is room for further development. It is all SMT, but with larger-sized SMT components and a board that is not very densely packed, making it a great first project for an experienced builder who wants to get his/her feet wet with SMT.

Here are the specifications (copied and pasted from Jason’s site) -

Frequency Range: Approximately 7.030 to 7.034 MHz (at +13.7 VDC power supply)
IF Bandwidth: Approximately 400 Hz
Current Consumption: 25 mA (at +13.7 VDC power supply)
Power supply: +9 VDC to +14 VDC
MDS: -123 dBm
3rd Order IMD DR: 84 dB
IF Rejection: 74 dB
Image Rejection: 67 dB
PCB dimensions: 70 mm x 100 mm
Antenna Connector: BNC
DC Power Connector: 2.1 mm barrel jack
Phone Jack: 3.5 mm stereo
Key Jack: 3.5 mm stereo
Muting, sidetone (user enabled), T/R switch, external VFO port included

More info here on Jason’s blog.

The CRX1 is not available as a “proper” kit yet but instead of selecting beta testers, as he has done in the past, Jason is selling 8 beta kits on his website for the sum of just $29. Because it comes with minimal documentation, it is only recommended for experienced kit builders. I have built 3 of Jason’s beta kits before and can testify that if you are good at soldering and know how to follow simple instructions, you’ll be fine. The beta documentation probably won’t give you a lot of hand-holding, but if you’ve done this sort of stuff before, you won’t have any problems.

If you’re in the mood for building something and have $29, this sounds like a good idea to me.

NOTE – I just noticed that the Etherkit store is now out of stock of the CRX1 beta. Hopefully we won’t have to wait too long for the production version of the kit.

May 24, 2013

Taking Stock, New Desert Ratt 2 Recording, and A New Tut80 Run

When I started this blog almost 4 years ago, I was getting a (very small) handful of page views every day and had no idea that anyone would find it at all interesting or useful. In fact, I don’t think anyone did at first. Then I started building a few things and found that some people enjoyed looking at the pictures of my builds and in some cases, were encouraged to try building things themselves.

I used to think that in order to have a blog, website, or other kind of internet presence, you needed to be really, really good at something or it wasn’t worth putting your stuff out there, but I was missing the point. I think that the point is sharing. I don’t need to be one of the best at something, because everyone does things differently. If I do my best at something, and share the way that I did it, that information could well be useful to someone else who was trying to figure out how to do the same thing. Maybe my approach will present an interesting alternative to someone who was thinking of a different approach.

My last post on the NA5N Desert Ratt 2 Regen is quite a good example of this. I certainly didn’t design it so wasn’t offering anything radically new, but for anyone wanting to build one, there aren’t very many examples on the internet, with pictures, of DR2’s. Of the ones that exist, there aren’t a lot of detailed pictures, with discussion of construction details, all in one place. Perhaps someone was interested in building it, but was wanting to know the winding information for toroids (which doesn’t seem to be available online), or was wondering whether the tuning would be too fine, what kind of reduction drive to use etc. This is why I like to include this kind of information in my posts, in case it can help someone.

Since I sold my FT-817 2 years ago with a desire to rely more on homebrew gear, things have gone quite well. Admittedly the main rig at AA7EE has been a K2, which is not exactly home-brew, but it still felt good to prove to myself that I could assemble a kit of such complexity.

Apologies for the following 2 lackluster photos (it has to do with my inability in using flash to light indoor scenes, among other things) but here are the main bits of gear I have built in the last 2 or 3 years. These are the ones that worked; I left out the partially completed projects (which includes 2 DSB rigs that have working receivers but not fully working transmitters) .

On the top shelf, from left to right, is the 40M DC receiver using a Hi-Per-Mite filter, and an OHR WM-2 QRP Wattmer.

On the middle level is my K2, Fort Tuthill 80 (see news about a further release of Tut80 kits below), and the NA5N Desert Ratt 2 Regen.

On the bottom level you can see the Norcal 2N2/40, the first beta of the CC-20 and the first beta of the CC1 (it’s successor), both sitting on top of the G3WPO DSB80, and the N1BYT WBR Regen Receiver for 40M.

On the desk in front of that lot is a little 2 transistor TX on 7030 based on the Pixie 2 design. I have used it successfully with the WBR for a 100% home-brew on-air experience! -

The reason I arranged all these projects at my operating position and took their picture together is because I wanted to review my progress so far.  My interests are shifting, and it looks like ham radio will be taking a backseat to other pursuits for the next few months. This was a good way of putting a bookend on this period before I begin another one. This color shot shows why I usually drag my projects into outside light in order to photograph them.  I really need to work on my flash lighting skills (note the blown-out red channel on the freq displays – a bit of HDR work with Photoshop could have helped this, but sometimes I just want get on with things and post them!)

In other news, the videos I posted of the Desert Ratt 2 were intended to give a general sense of what this neat little regen is like to tune around the bands.  It doesn’t really give a good sense of what the audio from the receiver sounds like though, as I was using an MFJ-281 ClearTone speaker, which has a restricted audio response. On top of that, I was using the internal microphone of an old compact camera (Canon A80) to record it. To remedy this I made a recording the other night from the speaker jack of the DR2 directly into the line input of a little flash recorder (the Marantz PMD620, if you’re interested) and posted it to Soundcloud.  This will give you a much better idea of the quality of the audio from this receiver. Unfortunately, band conditions weren’t too good, so I wasn’t able to find any consistently strong signals with little in the way of QSB, but this recording of Radio Habana, Cuba isn’t too shabby.  It has been edited down, and the edit points are marked by cowbell sounds. When the signal gets strong, you can hear the wide frequency response and good fidelity of the Desert Ratt 2 -

And finally, I’ve had the pleasure of an e-mail chat with John K5JS, of the Arizona ScQRPions, and he informs me that they will be producing a final run of the Dan Tayloe designed Fort Tuthill 80 Direct Conversion CW QRP TX/RX. They already have the boards and many of the parts, so it sounds as if they just need to order some more parts and have a kitting party. This is no mean feat, as kitting is an awful lot of work. I don’t know when this will be happening, but it is definitely in the works. As you no doubt know, QRP Kits are selling versions of this rig for 15M and 160M, but I think it would be fun to buy another of the Tut80 kits when they come out and mod it for 40M. Has anyone done this? Could they post details of their mods to the Tut80 Yahoo Group if they have, perhaps?

In the meantime, the weather has been getting nicer and combined with the fact that the bands haven’t been in great shape, it’s as if mother nature is coaxing me to get out more. I plan to do just that. My bicycle has a new chain, and the weather is perfect for bike rides.  There’s also a new camera calling my name, which will require new photo software, and the inevitable upgrade of my operating system (I’m still on XP), as well as much time spent outside taking lots of pictures. I’ve been looking at my rather old photo portfolio and realizing that there is much work to be done, and much fun to be had.

Much work. Much fun,  I love it when the two go together :-)

April 17, 2013

My Ongoing Pre-Occupation With High Quality Air-Spaced Variable Capacitors

I’ve blogged before about air-spaced variable capacitors.  I’ve always liked ‘em, but I think my understanding of what makes a good one is maturing a little more. I was the winning bidder on a really nice-looking specimen on eBay a few days ago.  Ever since placing the winning bid, I had been excitedly looking at the pictures of it posted by the seller. It looked great. How exciting when it arrived in the mail yesterday and I got a chance to see it “in person”, as it were!  I got it for $11.50 and I think I scored -

It is NOS (New Old Stock) meaning that while it is old, it has never been used. Surprisingly, there seems to be quite a few of these high-quality NOS caps still floating around. Here are the specs for this series of variable capacitors from Hammarlund -

The cap that I scored has nickel-plated brass vanes. Brass is good, as it expands and contracts with changes  in temperature less than aluminum does (the other main material from which variable capacitor rotors and stators are made.) Also good are the bearings on each end of the rotor shaft. I can’t see them, but I assume the bearings are hidden away. It gets better. This capacitor has wide-spaced plates, meaning less change in capacitance with temperature changes than a part with closer spacing. Oh – and this is all firmly mounted on a ceramic base. Ceramic is a great insulator and I’m thinking that this must also be good for the physical stability of the component with regards to changes in temperature.

I just noticed something. As you rotate the shaft clockwise, the capacitance increases. It’s normally the other way around.  An end-stop prevents the shaft from rotating more than 180°, or this wouldn’t be an issue.  This must have been intended for use with a drive mechanism that translated the rotation of the tuning knob into rotation of the capacitor shaft in the other direction. I hope that the length of shaft protruding from the other end is enough for me to connect to, otherwise it might end up on the shelf for a few more decades!

One thing you may not appreciate from these photos is the feeling of solidity. This is a beautifully engineered part. See how the shaft is off-center? This makes for a non-linear relationship between the rotation of the shaft and the change in capacitance.  The change in capacitance occurs in such a way as to make the higher frequencies a little less cramped together, which is what happens with a capacitor where the relationship is strictly linear.

I mean, really – do variable capacitors get much better than this?  I don’t have definite plans yet for this little beauty but if my current interest in regens continues, I can see it paired up with the Jackson Brothers Dual Ratio Ball Drive and Dial I just ordered from the UK and used as the main tuning cap in a general coverage regen receiver – all built on a generously-sized aluminum chassis with front panel. (EDIT – unless I am able to connect the ball drive to the rear end of the shaft, this is not going to happen. Fingers crossed.)

Scroll back up to the top of the page and look at this fabulously engineered piece of American history sitting on top of it’s original box. That’s what it feels like to me – a piece of American history, and I got it for a few bucks. I will feel terribly privileged to be able to incorporate it into my own project at some point, though I’m going to hang onto that box.

Incidentally, while riding around Oakland, I noticed that this commercial space is up for lease.  It would be a good place for a ham-oriented business don’t you think? EDIT – It is now March 2014 and I recently noticed that this space has been turned into a coffee bar – the type that looks like it is part chemistry lab, with much glassware used in the brewing of the coffee.  Aah well – better than being left empty!

March 29, 2013

Good Ops, Ben’s Best Bent Wire, and Some New Home-Made QSL Cards

Nearly every evening on 40M, I hear Bill Crane W9ZN for an hour or two coming in from Chicago. He’s a good op. I’m not sure what his top speed is, but I often hear him conversing easily with others at around 25wpm.  He always matches the speed of whoever he is talking to, which I think is one mark of a good op. I remember the first time I QSO’ed with KA7PUN a couple of years ago.  We were conversing easily at what was my comfortable speed back then (which was probably around 16-17 wpm).  I thought that was his regular comfortable speed until I heard him in QSO a few days later with another station sending much faster. I realized that he had matched my speed and felt very grateful to him for making me feel comfortable in that QSO.

Anyway, back to Bill. I first noticed him on the band for a style of sending that incorporates a variation on the “Ben’s Best Bent Wire” routine that commercial operators used to use in order to loosen up their wrists before a shift. At the time, I wasn’t familiar with this type of routine and only knew that Bill had a style that made him stand out on the band for me.  Here’s what I’m talking about.  This is Bill as recorded last night -

I imagine that a few decades ago, this kind of routine was more prevalent on the bands, but W9ZN is the only station I have heard doing it.  Some people would probably prefer to perform their warm-up routines off the air, but it sure is a good way for Bill to be instantly identifiable. A little online research seems to indicate that he was a Chicago radio personality in the 60’s and 70’s, going by the name of Bill “Butterball” Crane. I’d sure like to QSO with him, but he never hears my puny 5W sigs.  He’s running QRO, and a regular presence in the segment from 7031 – 7034 most evenings.

I’ve also been busying myself with making some new QSL cards, firstly for QSO’s I make with the CC1 beta.  I was inspired by NT7S’ CC1 beta card, and wanted one for myself. I’m lucky to have Photoshop (CS2) and to have finally figured out the importance of layers and how to use them.  The initial version of the CC1 beta card that I came up with looked good on the screen, but due to the fact that I didn’t have a profile for the printer at my local Fedex Kinko’s (they probably don’t have one), the card printed out a lot darker than it looked on my monitor, and some of the text ended up being buried in the background.  I did eventually come up with 2 versions, both of which look OK when printed. One, in my opinion, looks better in print than the other, but I’m waiting to hear back from NT7S as to whether he agrees before I print up a few of one of these two.  These are not scans of the printed cards, but jpeg renditions of the original Photoshop files. Bear in mind when you’re looking at these, that the printer in my local Fedex kinko’s prints files darker than they look on-screen, so if you’re thinking these images look a bit light, that is why -

I finally seem to be getting the hang of using Photoshop to do these kinds of layouts so, bolstered by the success of these cards, decided to make another one. It took me a while to scan the G-QRP Club logo and change it from black on a white background to white on a transparent background, but now I know how to do it, it’s a piece of cake -

Of all these cards, my favorite is my basic 2 color one.  The following image, unlike the previous ones, is not a jpeg generated from the original Photoshop file, but a scan of the final printed card.  I did this because the color of the card stock does a lot to make the card look good.  It’s called “Sawgrass” and unfortunately, my local Fedex Kinkos won’t be restocking it once their current stock is gone -

It’s simple, effective, and prints out well on a variety of printers – no complex graphics that need to be rendered in accurate tones. On top of that, if I need to make a lot and am feeling a bit skint, it doesn’t look too bad in monochrome either.

Next Page »

The Rubric Theme. Create a free website or blog at WordPress.com.


Get every new post delivered to your Inbox.

Join 1,103 other followers