Dave Richards AA7EE

November 7, 2011

First Stage Of K2 Building Completed – More Pictures

The missing part arrived from Elecraft yesterday (the day after I called).  The fact that I live just 50 miles from them helps in getting things delivered swiftly. The part was a 20-pin connector for connecting the main board to the front panel board. Once that was installed, it didn’t take long to partially assemble the case and plug the completed front panel and control boards into the RF board – which at this stage had just the DC power, latching relays and the I/O controller circuits installed. Before performing testing on this stage of the build, I had to install the bail on the base of the case – a procedure which some builders have had trouble with.  Following the procedure in the manual requires you to compress the bail which, if you have a vice, can probably be accomplished without too much bother, but if like me, you’re trying to do it with your hands, could be quite difficult.  It was in my case, at least.

This is what we’re trying to accomplish:

The method I used, which was adapted from one I found described on the Elecraft reflector, was to install one of the oval feet and place one end of the tilt bail in it. Then I rummaged around in the junk box and found a machine screw that fitted through one of the holes in the other foot but was longer than the supplied screws. I installed this screw through one of the holes in the remaining oval foot, but only screwed the nut on a little, allowing me to lift the foot enough to get the end of the tilt bail underneath it (you do have to compress the tilt bail a bit but nowhere near as much as you would if you had followed the procedure in the manual). Then I installed a regular length screw and nut in the other hole and screwed it down fairly tight. The next step was to replace the long screw and nut with the supplied (shorter) screw and nut and screw it all down tightly.

The first IC to be installed on the main board (called the RF board) is U1, the I/O controller. It controls all the latching relays for the micro-controller, as well as other input and output functions.  You can see it here, flanked by some of the latching relays:

A similar view:

The control board plugged into the main (RF) board:

A view from above:

It passed all the tests. The band changing relays work. The display does too, as do the circuits that drive the signal strength bar-graph LED meter. I can twist the tuning knob and the frequency readout counts correctly. The keyer and keyer memory work and sound great. It even looks great from the front. We know, of course, that at this point it is a gutless wonder; it really needs a synthesized VFO, as well as transmitter and receiver circuits. As gratifying as it is to play with it at this stage, the result of the next stage will be to have a working receiver on 40M.  I’ll talk to you next when I’m at that point!

About these ads

3 Comments »

  1. Great project, Dave, will follow this.

    P.S. It’s obvious that you’re a pretty good photographer, too :)

    Comment by Hans — November 7, 2011 @ 10:56 am | Reply

  2. Yep, the quality of photography stands out as well as that of the construction.

    Comment by John AE5X — November 7, 2011 @ 4:44 pm | Reply

  3. Nice workmanship!

    Comment by Mike — November 10, 2011 @ 10:17 am | Reply


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

The Rubric Theme. Create a free website or blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 1,126 other followers

%d bloggers like this: